Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dynamical approach to the Casimir effect

dc.contributor.authorSoto, R.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T03:32:30Z
dc.date.available2023-06-20T03:32:30Z
dc.date.issued2011-03-02
dc.description© American Physical Society. This article has benefited from discussions with many colleagues: J. M. R. Parrondo, M. Clerc, N. van Kampen, O. Descalzi, F. Barra, A. Galindo, G. G. Alcaine, J. San Martin, and U. M. B. Marconi. P. R.-L. and R. B. are supported by the Spanish projects MOSAICO, UCM/PR34/07-15859, and MODELICO (Comunidad de Madrid). P. R.-L.'s research is also supported by a FPU MEC grant. The research is supported by Fondecyt Grants No. 1100100, No. 1070958, and No. 7070301, and Proyecto Anillo ACT 127.
dc.description.abstractCasimir forces can appear between intrusions placed in different media driven by several fluctuation mechanisms, either in equilibrium or out of it. Herein, we develop a general formalism to obtain such forces from the dynamical equations of the fluctuating medium, the statistical properties of the driving noise, and the boundary conditions of the intrusions (which simulate the interaction between the intrusions and the medium). As a result, an explicit formula for the Casimir force over the intrusions is derived. This formalism contains the thermal Casimir effect as a particular limit and generalizes the study of the Casimir effect to such systems through their dynamical equations, with no appeal to their Hamiltonian, if any exists. In particular, we study the Casimir force between two infinite parallel plates with Dirichlet or Neumann boundary conditions, immersed in several media with finite correlation lengths (reaction-diffusion system, liquid crystals, and two coupled fields with non-Hermitian evolution equations). The driving Gaussian noises have vanishing or finite spatial or temporal correlation lengths; in the first case, equilibrium is reobtained and finite correlations produce nonequilibrium dynamics. The results obtained show that, generally, nonequilibrium dynamics leads to Casimir forces, whereas Casimir forces are obtained in equilibrium dynamics if the stress tensor is anisotropic.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish project MOSAICO
dc.description.sponsorshipSpanish project MODELICO (Comunidad de Madrid)
dc.description.sponsorshipFPU MEC
dc.description.sponsorshipFondecyt
dc.description.sponsorshipProyecto Anillo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21240
dc.identifier.doi10.1103/PhysRevE.83.031102
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://pre.aps.org/pdf/PRE/v83/i3/e031102
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43800
dc.issue.number3, Par
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDUCM/PR34/07-15859
dc.relation.projectID1100100
dc.relation.projectID1070958
dc.relation.projectID7070301
dc.relation.projectIDACT 127
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleDynamical approach to the Casimir effect
dc.typejournal article
dc.volume.number83
dcterms.references[1] M. Krech, Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). [2] U. M. Bordag and V. Mostepanenko, Phys. Rep. 353, 1 (2001). [3] K. A. Milton, J. Phys. A: Math. Gen. 37, R209 (2004). [4] S. K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005). [5] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [6] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, Oxford, United Kingdom, 2009). [7] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948). [8] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett. 99, 170403 (2007). [9] J. L. Cardy, in Introduction to Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1987), Vol. 11. [10] D. Bartolo, A. Ajdari, and J. B. Fournier, Phys. Rev. E 67, 061112 (2003). [11] M. Krech, Phys. Rev. E 56, 1642 (1997). [12] D. S. Dean and A. Gopinathan, J. Stat. Mech. (2009) L08001. [13] D. Bartolo,A. Ajdari, J.-B. Fournier, and R. Golestanian, Phys. Rev. Lett. 89, 230601 (2002). [14] D. Dantchev and M. Krech, Phys. Rev. E 69, 046119 (2004). [15] A. Gambassi, Eur. Phys. J. B 64, 379 (2008). [16] A. Ajdari, B. Duplantier, D. Hone, L. Pelity, and J. Prost, J. Phys. II (France) 2, 487 (1992). [17] R. Brito, U. Marini Bettolo Marconi, and R. Soto, Phys. Rev. E 76, 011113 (2007); R. Brito, R. Soto, and U. Marini Bettolo Marconi, Gran. Matt. 10, 29 (2007). [18] D. S. Dean and A. Gopinathan, Phys. Rev. E 81, 041126 (2010). [19] F. Sagués, J. M. Sancho, and J. García-Ojalvo, Rev. Mod. Phys. 79, 829 (2007). [20] J. P. Gollub and J. F. Steinman, Phys. Rev. Lett. 45, 551 (1980). [21] C. Cattuto, R. Brito, U. Marini, Bettolo Marconi, F. Nori, and R. Soto, Phys. Rev. Lett. 96, 178001 (2006). [22] H. R. Brand, S. Kai, and S. Wakabayashi, Phys. Rev. Lett. 54, 555 (1985). [23] L. Kuhnert, K. I. Agladze, and V. I. Krinsky, Nature 337, 244 (1989). [24] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [25] C. Gardiner, Handbook of Stochastic Methods, Springer Series in Synergetics (Springer-Verlag, Berlin, Heidelberg, New York, 2004). [26] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, United Kingdom, 2001). [27] S. R. de Groot and P.Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984). [28] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 2007). [29] H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications, Springer Series in Synergetics (Springer-Verlag, Berlin, Heidelberg, New York, 1996). [30] J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer-Verlag, New York, 1999). [31] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977). [32] For instance the two local energy functions F1 = |∇φ|2/2 and F2 = −φ_φ/2 yield the same energy functional F and the same G operator: G = _. [33] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, Heidelberg, New York, 1998). [34] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, theorem 2.4.15 (Cambridge University Press, Cambridge, United Kingdom, 1994). [35] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Addison-Wesley, Redwood City, California, 1994). [36] O. Descalzi and R. Graham, Phys. Lett. A 170, 84 (1992). [37] A. Maciołek, A. Gambassi, and S. Dietrich, Phys. Rev. E 76, 031124 (2007). [38] L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Butterworth-Heinemann, 1980) [pp. 82–85, 4th edition, ISBN- 13: 978-0750627689]. [39] R. Evans and P. Tarazona, Phys. Rev. Lett. 52, 557 (1984); P. C. Hemmer and J. L. Lebowitz, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1976), Vol. VB. [40] A. Ajdari, L. Peliti, and J. Prost, Phys.Rev. Lett. 66, 1481 (1991). [41] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, Oxford, United Kingdom, 1993). [42] J.-B. Fournier, private communication. There is an erratum below Eq. (33) in Ref. [33]. [43] Caution should be taken to avoid the case λ1 = λ2, for which the dynamic matrix is not diagonalizable and a Jordan block appears. The method developed in this article is not directly applicable, but the generalization is simple. Also, neither λ1 or λ2 can vanish, because there is no damping term to make the nonconservative noise vanish and the fields would perform an unbounded random walk. [44] E. Elizalde, J. Phys. A: Math. Gen. 27, 3775 (1994). [45] P. R. Buenzli and R. Soto, Phys. Rev. E 78, 020102(R) (2008).
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito01libre.pdf
Size:
236.05 KB
Format:
Adobe Portable Document Format

Collections