A remark on fields with the dense orbits property
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-21T02:04:21Z | |
dc.date.available | 2023-06-21T02:04:21Z | |
dc.date.issued | 1986 | |
dc.description.abstract | Let K be a formally real field and Ω its order space. The automorphisms group of K acts on Ω, and K is called D.O.P. when all the orbits are dense in Ω. In this note the following is shown: The field of meromorphic function germs of a real irreducible analytic germ of dimension > 1 is never D.O.P | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20434 | |
dc.identifier.issn | 0030-8730 | |
dc.identifier.officialurl | http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.pjm/1102702808&page=record | |
dc.identifier.relatedurl | http://projecteuclid.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64777 | |
dc.issue.number | 1 | |
dc.journal.title | Pacific Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 192 | |
dc.page.initial | 189 | |
dc.publisher | Pacific Journal of Mathematics | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 515.17 | |
dc.subject.keyword | Dense orbits property | |
dc.subject.keyword | formally real field | |
dc.subject.keyword | order space | |
dc.subject.keyword | germs of meromorphic functions | |
dc.subject.keyword | real irreducible analytic germ | |
dc.subject.keyword | orderings | |
dc.subject.keyword | separation of semianalytic subgerms | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | A remark on fields with the dense orbits property | |
dc.type | journal article | |
dc.volume.number | 121 | |
dcterms.references | S. S. Abhyankar and M. van der Put, Homomorphisms of analytic local rings, J. Reine Angew Math., 242 (1970), 27-33. D. W. Dubois and T. Recio, Order extensions and real algebraic geometry, in Amer. Math. Soc. Contemporary Math., 8 (1981). J. M. Gamboa, A characterization of rational and elliptic curves in terms of their space of orderings, Rocky Mountain J. Math., 14 (1984), 499-502. J. M. Gamboa and T. Recio, Ordered fields with the dense orbits property, J. Pure Appl. Algebra, 30 (1983), 237-246. J. M. Ruiz, Central orderings in fields of meromorphic function germs, Manuscripta Math., 46 (1984), 193-214. J. M. Ruiz, A note on a separation problem, Arch. Math., 43 (1984), 422-426. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1