Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Collaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems

dc.contributor.authorSoltero, Francisco J.
dc.contributor.authorFernández Blanco, Pablo
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2024-11-18T15:40:48Z
dc.date.available2024-11-18T15:40:48Z
dc.date.issued2023-11-19
dc.description2023 Descuento MDPI
dc.description.abstractTechnical indicators use graphic representations of datasets by applying various mathematical formulas to financial time series of prices. These formulas comprise a set of rules and parameters whose values are not necessarily known and depend on many factors, such as the market in which they operate, the size of the time window, and so on. This paper focuses on the real-time optimization of the parameters applied for analyzing time series of data. In particular, we optimize the parameters of some technical financial indicators. We propose the combination of several Multiobjective Evolutionary Algorithms. Unlike other approaches, this paper applies a set of different Multiobjective Evolutionary Algorithms, collaborating to construct a global Pareto Set of solutions. Solutions for financial problems seek high returns with minimal risk. The optimization process is continuous and occurs at the same frequency as the investment time interval. This technique permits the application of the non-dominated solutions obtained with different MOEAs at the same time. Experimental results show that Collaborative Multiobjective Evolutionary Algorithms obtain up to 22% of profit and increase the returns of the commonly used Buy and Hold strategy and other multi-objective strategies, even for daily operations.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationSoltero, F.J.; Fernández-Blanco, P.; Hidalgo, J.I. Collaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems. Appl. Sci. 2023, 13, 12485. https://doi.org/10.3390/app132212485
dc.identifier.doi10.3390/app132212485
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app132212485
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110716
dc.issue.number12485
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.final17
dc.page.initial1
dc.publisherMDPI
dc.relation.projectIDPID2021-125549OB-I00
dc.relation.projectIDPDC2022-133429-I00
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordMachine learning
dc.subject.keywordTrading systems
dc.subject.keywordMultiobjective optimization
dc.subject.keywordEvolutionary algorithms
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleCollaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery981f825f-2880-449a-bcfc-686b866206d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Collaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems

Collections