Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

BCEPS: A Web Server to Predict Linear B Cell Epitopes with Enhanced Immunogenicity and Cross-Reactivity

dc.contributor.authorRas Carmona, Álvaro
dc.contributor.authorPeláez Prestel, Héctor Fernando
dc.contributor.authorLafuente Duarte, María Esther
dc.contributor.authorReche Gallardo, Pedro Antonio
dc.date.accessioned2023-06-16T14:26:55Z
dc.date.available2023-06-16T14:26:55Z
dc.date.issued2021-10-14
dc.description.abstractPrediction of linear B cell epitopes is of interest for the production of antigen-specific antibodies and the design of peptide-based vaccines. Here, we present BCEPS, a web server for predicting linear B cell epitopes tailored to select epitopes that are immunogenic and capable of inducing cross-reactive antibodies with native antigens. BCEPS implements various machine learning models trained on a dataset including 555 linearized conformational B cell epitopes that were mined from antibody–antigen protein structures. The best performing model, based on a support vector machine, reached an accuracy of 75.38% ± 5.02. In an independent dataset consisting of B cell epitopes retrieved from the Immune Epitope Database (IEDB), this model achieved an accuracy of 67.05%. In BCEPS, predicted epitopes can be ranked according to properties such as flexibility, accessibility and hydrophilicity, and with regard to immunogenicity, as judged by their predicted presentation by MHC II molecules. BCEPS also detects if predicted epitopes are located in ectodomains of membrane proteins and if they possess N-glycosylation sites hindering antibody recognition. Finally, we exemplified the use of BCEPS in the SARS-CoV-2 Spike protein, showing that it can identify B cell epitopes targeted by neutralizing antibodies.en
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77727
dc.identifier.citationRas Carmona, Á., Peláez Prestel, H. F., Lafuente Duarte, M. E. & Reche Gallardo, P. A. «BCEPS: A Web Server to Predict Linear B Cell Epitopes with Enhanced Immunogenicity and Cross-Reactivity». Cells, vol. 10, n.o 10, octubre de 2021, p. 2744. DOI.org (Crossref), https://doi.org/10.3390/cells10102744.
dc.identifier.doi10.3390/cells10102744
dc.identifier.issn2073-4409
dc.identifier.officialurlhttps://doi.org/10.3390/cells10102744
dc.identifier.relatedurlhttps://www.mdpi.com/2073-4409/10/10/2744
dc.identifier.urihttps://hdl.handle.net/20.500.14352/5057
dc.issue.number10
dc.journal.titleCells
dc.language.isoeng
dc.page.initial2744
dc.publisherMDPI
dc.relation.projectIDIND2020/BMD-17364
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu612.017
dc.subject.keywordB-cells
dc.subject.keywordEpitopes
dc.subject.keywordPrediction
dc.subject.keywordMachine learning
dc.subject.keywordSARS-CoV-2
dc.subject.ucmMedicina
dc.subject.ucmInmunología
dc.subject.unesco32 Ciencias Médicas
dc.subject.unesco2412 Inmunología
dc.titleBCEPS: A Web Server to Predict Linear B Cell Epitopes with Enhanced Immunogenicity and Cross-Reactivityen
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication37baae1a-c604-4a82-8288-36e222361871
relation.isAuthorOfPublication97e904a0-e67f-42ca-8ebc-c588048120d9
relation.isAuthorOfPublicationf6c03a66-fd6a-4e17-87a1-9d03052cadb9
relation.isAuthorOfPublication372eb700-f6f8-4156-80f5-b8f7c9edafe1
relation.isAuthorOfPublication.latestForDiscovery37baae1a-c604-4a82-8288-36e222361871

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cells-10-02744-v2.pdf
Size:
16.52 MB
Format:
Adobe Portable Document Format

Collections