The beam quality parameter of spirally polarized beams

Thumbnail Image
Full text at PDC
Publication Date
Ramírez Sánchez, Victoria
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing Ltd.
Google Scholar
Research Projects
Organizational Units
Journal Issue
Starting from the expression for the quality parameter of a superposition of two general fields, the case of beams that can be written in terms of the polarization basis introduced by Gori is investigated. Different types of this class of beam are studied and compared. In particular, spirally polarized beams are considered. As an example, polarized Bessel-Gauss beams are analyzed in detail.
© 2008 IOP Publishing Ltd. We thank Dr J C G de Sande and Dr J Serna for their valuable suggestions. This work has been supported by the Ministerio de Educación y Ciencia of Spain, project FIS2007-63396, and project CCG07-UCM/ESP-3070.
[1] Tidwell S C, Ford D H and Kimura W D 1990 Generating radially polarized beams interferometrically Appl. Opt. 29 2234-2239. [2] Erdogan T and Hall D G 1990 Circularly symmetric distributed feedback semiconductor laser: an analysis J. Appl. Phys. 68 1435-44. [3] Erdogan T, King O, Wicks G W, Hall D G, Anderson E and Rooks M J 1992 Circularly symmetric operation of a concentric circle-grating surface emitting AlGaAs/GaAs quantum well semiconductor laser Appl. Phys. Lett. 60 1921-3. [4] Tidwell S C, Kim G H and Kimura W D 1993 Efficient radially polarized laser beam generation with a double interferometer Appl. Opt. 32 5222-9. [5] Freund I 2001 Polarization flowers Opt. Commun. 199 47-63. [6] Mejías P M, Martínez-Herrero R, Piquero G and Movilla J M 2002 Parametric characterization of the spatial structure of non-uniformly polarized laser beams Prog. Quantum Electron. 26 65-130. [7] Martínez-Herrero R, Mejías P M, Piquero G and Ramírez-Sánchez V 2008 Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams Opt. Commun. 281 1976-80. [8] Zhan Q and Leger J R 2002 Focus shaping using cylindrical vector beams Opt. Express 10 324-31. [9] Zhan Q 2005 Trapping metallic Rayleigh particles with radial polarization Opt. Express 12 3377-82. [10] Niziev V G and Nesterov A V 1999 Influence of beam polarization on laser cutting efficiency J. Phys. D: Appl. Phys. 32 1455-61. [11] Nesterov A V and Niziev V G 2000 Laser beams with axially symmetric polarization J. Phys. D: Appl. Phys. 33 1817-22. [12] Liu Y, Cline D and He P 1999 Vacuum laser acceleration using a radially polarized CO2 laser beam Nucl. Instrum. Methods Phys. Res. A 424 296-303. [13] Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Longitudinal field modes probed by single molecules Phys. Rev. Lett. 86 5251-4. [14] Gori F 2001 Polarization basis for vortex beams J. Opt. Soc. Am. A 18 1612-7. [15] Borghi R and Santarsiero M 2004 Nonparaxial propagation of spirally polarized optical beams J. Opt. Soc. Am. A 21 2029-37. [16] Borghi R, Santarsiero M and Alonso M A 2005 Highly focused spirally polarized beams J. Opt. Soc. Am. A 22 1420-31. [17] Moshe I, Jackel S and Meir A 2003 Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects Opt. Lett. 28 807-9. [18] Roth M S, Wyss E W, Glur H and Weber H P 2005 Generation of radially polarized beams in a Nd:YAG laser with self-adaptative overcompensation of the thermal lens Opt. Lett. 30 1665-7. [19] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2007 Efficient extracavity generation of radially and azimuthally polarized beams Opt. Lett. 32 1468-70. [20] Moshe I, Jackel S, Meir A, Lumer Y and Leibush E 2007 2 kW, M <10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers Opt. Lett. 32 47-9. [21] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2008 Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams Opt. Commun. 281 732-8. [22] Martínez-Herrero R, Piquero G and Mejías P M 2008 Beam quality changes of radially and azimuthally polarized fields propagating through quartic phase plates Opt. Commun. 281 756-9. [23] Kang X and Lü B 2005 The M factor of nonparaxial Hermite-Gaussian beams and related problems Optik 116 232-6. [24] Kang X, He Z and Lü B 2007 Far-field properties and beam quality of vectorial Hermite-Laguerre-Gaussian beams beyond the paraxial approximation Opt. Laser Technol. 39 1046-53. [25] Lavi S, Prochaska R and Keren E 1988 Generalized beam parameters and transformation law for partially coherent light Appl. Opt. 27 3696-703. [26] Bastiaans M J 1989 Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems Optik 82 173-81. [27] Siegman A E 1990 New developments in laser resonators Proc. SPIE 1224 2-14. [28] Serna J, Martínez-Herrero R and Mejías P M 1991 Parametric characterization of general partially coherent beams propagating through ABCD optical systems J. Opt. Soc. Am. A 8 1094-8. [29] Lü Q, Dong S and Weber H 1995 Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod Opt. Quantum Electron. 27 777-83. [30] Ramee S and Simon R 2000 Effect of holes and vortices on beam quality J. Opt. Soc. Am. A 17 84-94. [31] Gori F, Guattari G and Padovani C 1987 Bessel Gauss beams Opt. Commun. 64 491-5. [32] Jordan R H and Hall D G 1994 Free space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution Opt. Lett. 19 427-9. [33] Greene P L and Hall D G 1996 Diffraction characteristics of the azimuthal Bessel-Gauss beam J. Opt. Soc. Am. A 13 962-6. [34] Greene P L and Hall D G 1998 Properties and diffraction of vector Bessel-Gauss beams J. Opt. Soc. Am. A 15 3020-7. [35] Novitsky A V and Novitsky D V 2007 Negative propagation of vector Bessel beams J. Opt. Soc. Am. A 24 2844-9. [36] Seshadri S R 2008 Electromagnetic modified Bessel-Gauss beams and waves J. Opt. Soc. Am. A 25 1-8. [37] Orlov S and Stabinis A 2004 Propagation of superpositions of coaxial optical Bessel beams carrying vortices J. Opt. A: Pure Appl. Opt. 6 S259-62. [38] Tao S H, Yuan X C, Lin J and Burge R E 2005 Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges Opt. Express 14 535-41. [39] Borghi R and Santarsiero M 1997 M factor of Bessel-Gauss beams Opt. Lett. 22 262-4. [40] Berry M V 2004 Optical vortices evolving from helicoidal integer and fractional phase steps J. Opt. A: Pure Appl. Opt. 6 259-68. [41] Basistiy I V, Pasko V A, Slyusa V V, Soskin M S and Vasnetsov M V 2004 Synthesis and analysis of optical vortices with fractional topological charges J. Opt. A: Pure Appl. Opt. 6 S166-9. [42] Leach J, Yao E and Padgett M J 2004 Observation of the vortex structure of a non-integer vortex beam New J. Phys. 6 71. [43] Tao S H and Yuan X C 2005 Fractional optical vortex beam induced rotation of particles Opt. Express 13 7726-31.