Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rapid and Reproducible MALDI-TOF-Based Method for the Detection of Vancomycin-Resistant Enterococcus faecium Using Classifying Algorithms

dc.contributor.authorCandela, Ana
dc.contributor.authorArroyo, Manuel J.
dc.contributor.authorSánchez Molleda, Ángela
dc.contributor.authorMéndez, Gema
dc.contributor.authorQuiroga, Lidia
dc.contributor.authorRuiz, Adrián
dc.contributor.authorCercenado Mansilla, Emilia
dc.contributor.authorMaron Arriaza, Mercedes
dc.contributor.authorMuñoz, Patricia
dc.contributor.authorMancera, Luis
dc.contributor.authorRodríguez Temporal, David
dc.contributor.authorRodríguez Sánchez, Belén
dc.date.accessioned2023-06-22T10:46:05Z
dc.date.available2023-06-22T10:46:05Z
dc.date.issued2022-01-27
dc.description.abstractVancomycin-resistant Enterococcus faecium represents a health threat due to its ability to spread and cause outbreaks. MALDI-TOF MS has demonstrated its usefulness for E. faecium identification, but its implementation for antimicrobial resistance detection is still under evaluation. This study assesses the repeatability of MALDI-TOF MS for peak analysis and its performance in the discrimination of vancomycin-susceptible (VSE) from vancomycin-resistant isolates (VRE). The study was carried out on protein spectra from 178 E. faecium unique clinical isolates—92 VSE, 31 VanA VRE, 55 VanB VRE-, processed with Clover MS Data Analysis software. Technical and biological repeatability were assayed. Unsupervised (principal component analysis, (PCA)) and supervised algorithms (support vector machine (SVM), random forest (RF) and partial least squares–discriminant analysis (PLS-DA)) were applied. The repeatability assay was performed with 18 peaks common to VSE and VRE with intensities above 1.0% of the maximum peak intensity. It showed lower variability for normalized data and for the peaks within the 3000–9000 m/z range. It was found that 80.9%, 79.2% and 77.5% VSE vs. VRE discrimination was achieved by applying SVM, RF and PLS-DA, respectively. Correct internal differentiation of VanA from VanB VRE isolates was obtained by SVM in 86.6% cases. The implementation of MALDI-TOF MS and peak analysis could represent a rapid and effective tool for VRE screening. However, further improvements are needed to increase the accuracy of this approach.en
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipInstituto de Salud Carlos III/Fondo Europeo de Desarrollo Regional
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72854
dc.identifier.citationCandela A, Arroyo MJ, Sánchez-Molleda Á, Méndez G, Quiroga L, Ruiz A, et al. Rapid and Reproducible MALDI-TOF-Based Method for the Detection of Vancomycin-Resistant Enterococcus faecium Using Classifying Algorithms. Diagnostics 2022;12:328. https://doi.org/10.3390/diagnostics12020328.
dc.identifier.doi10.3390/diagnostics12020328
dc.identifier.issn2075-4418
dc.identifier.officialurlhttps://doi.org/10.3390/diagnostics12020328
dc.identifier.relatedurlhttps://www.mdpi.com/2075-4418/12/2/328/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71624
dc.issue.number2
dc.journal.titleDiagnostics
dc.language.isoeng
dc.page.initial328
dc.publisherMPDI
dc.relation.projectIDPI15/01073; . (CPII19/00002)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordEnterococci
dc.subject.keywordVancomycin resistance
dc.subject.keywordMALDI-TOF
dc.subject.keywordMass spectrometry
dc.subject.keywordPeak analysis
dc.subject.ucmEnfermedades infecciosas
dc.subject.unesco3205.05 Enfermedades Infecciosas
dc.titleRapid and Reproducible MALDI-TOF-Based Method for the Detection of Vancomycin-Resistant Enterococcus faecium Using Classifying Algorithmsen
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication533334d8-3141-4a95-be6d-aeec09717d3a
relation.isAuthorOfPublication.latestForDiscovery533334d8-3141-4a95-be6d-aeec09717d3a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
diagnostics-12-00328-v2.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format

Collections