An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria

dc.contributor.authorLombardo Hernández, Juan
dc.contributor.authorMansilla Guardiola, Jesús
dc.contributor.authorAucello, Riccardo
dc.contributor.authorBotta, Cristian
dc.contributor.authorGarcía Esteban, María Teresa
dc.contributor.authorMurciano Cespedosa, Antonio
dc.contributor.authorMuñoz Rodríguez, David
dc.contributor.authorQuarta, Elisa
dc.contributor.authorMateos González, Álvaro
dc.contributor.authorJuan Llamas, María Del Carmen
dc.contributor.authorRantsiou, Kalliopi
dc.contributor.authorGeuna, Stefano
dc.contributor.authorCocolin, Luca
dc.contributor.authorHerrera Rincón, Celia
dc.date.accessioned2025-08-27T11:10:00Z
dc.date.available2025-08-27T11:10:00Z
dc.date.issued2025-07-15
dc.descriptionThis research was funded by the Spanish Ministry of Science and Innovation through PID2023-147361NA-I00 and the Ramón y Cajal program (RYC2020-029499-I, from the MICINN, FSE/ Agencia Estatal de Investigación) to C. H-R. The work has been funded also by the Complutense University of Madrid (Research Project PR3/23- 30827) to C. H-R. We gratefully acknowledge support of the Spanish Ministry of Universities FPU Predoctoral Fellowship to J.L.-H. (FPU23/02273).
dc.description.abstractInteractions between bacteria and somatic cells are increasingly important for understanding cellular communication mechanisms. While the gut microbiome’s influence on the gut–brain axis is established, direct interactions between bacteria and neurons are poorly explored, especially regarding bidirectional information exchange. We developed an in vitro model using the foodborne bacterium Lactiplantibacillus plantarum and rat cortical neural cultures to study neuronal responses to bacterial presence through morphological, functional, and transcriptomic analyses. We found that L. plantarum adheres to neuronal surfaces without penetrating the soma. Real-time calcium imaging showed enhanced Ca2⁺ signaling dependent on bacterial concentration and active metabolism. Neurons exhibited changes in neuroplasticity-related proteins such as Synapsin I and pCREB, indicating functional modulation. Transcriptomic profiling revealed significant gene expression changes affecting networks linked to neurological conditions and bioelectrical signaling. Together, our results provide proof-of-concept for targeted neuronal responses induced by bacterial contact, offering key resources and transcriptomic data to advance the study of bacteria-driven neural modulation within the gut–brain axis.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.departmentDepto. de Genética, Fisiología y Microbiología
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationLombardo-Hernandez, J., Mansilla-Guardiola, J., Aucello, R., Botta, C., García-Esteban, M. T., Murciano-Cespedosa, A., Muñoz-Rodríguez, D., Quarta, E., Mateos González, Á., Juan-Llamas, C., Rantsiou, K., Geuna, S., Cocolin, L., & Herrera-Rincon, C. (2025). An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria. Scientific Reports, 15(1). https://doi.org/10.1038/S41598-025-10382-7
dc.identifier.doi10.1038/s41598-025-10382-7
dc.identifier.issn2045-2322
dc.identifier.officialurlhttps://doi.org/10.1038/s41598-025-10382-7
dc.identifier.relatedurlhttps://www.nature.com/articles/s41598-025-10382-7
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123459
dc.issue.number1
dc.journal.titleScientific Reports
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherSpringer Nature
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-147361NA-I00/Bacterias-en-chip progamables para interactuar con células neuronales
dc.relation.projectIDinfo:eu-repo/grantAgreement/Universidad Complutense de Madrid//PR3/23- 30827/Optimización de la primera interfaz integrada BacteriaCerebro para revelar la dinámica que emerge en el eje microbiota-cerebro
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu579.64
dc.subject.cdu612.8
dc.subject.cdu616.3
dc.subject.keywordNeurobacterial interaction
dc.subject.keywordMicrobiome
dc.subject.keywordGut bacteria
dc.subject.keywordBioelectricity
dc.subject.ucmMicrobiología (Biología)
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.ucmGastroenterología y hepatología
dc.subject.unesco2414 Microbiología
dc.subject.unesco2490 Neurociencias
dc.subject.unesco3205.03 Gastroenterología
dc.titleAn in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationbda3e5ed-dc29-4a85-95f4-444b6119db30
relation.isAuthorOfPublicatione7458641-ba66-451e-a11b-cbe8781c0158
relation.isAuthorOfPublication48a0e7e4-74ed-4ec9-93d0-dfb227eb61c9
relation.isAuthorOfPublication931af673-d8a7-4114-879b-ea5e8d22d293
relation.isAuthorOfPublication.latestForDiscoverybda3e5ed-dc29-4a85-95f4-444b6119db30

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_in_vitro_neurobacterial_interface.pdf
Size:
13.79 MB
Format:
Adobe Portable Document Format

Collections