Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods

dc.contributor.advisorHarrou, Fouzi
dc.contributor.advisorSun, Ying
dc.contributor.advisorTaghezouit, Bilal
dc.contributor.advisorAbdelkader, Dairi
dc.contributor.authorPolo Martínez, Jesús
dc.contributor.authorMartín Chivelet, Nuria
dc.contributor.authorAlonso Abella, Miguel
dc.contributor.authorSanz Saiz, Carlos
dc.contributor.authorCuenca Alba, José
dc.contributor.authorCruz Echeandía, Marina De La
dc.date.accessioned2024-04-25T14:16:15Z
dc.date.available2024-04-25T14:16:15Z
dc.date.issued2023-02-02
dc.description2023 Descuento MDPI
dc.description.abstractSolar power forecasting is of high interest in managing any power system based on solar energy. In the case of photovoltaic (PV) systems, and building integrated PV (BIPV) in particular, it may help to better operate the power grid and to manage the power load and storage. Power forecasting directly based on PV time series has some advantages over solar irradiance forecasting first and PV power modeling afterwards. In this paper, the power forecasting for BIPV systems in a vertical façade is studied using machine learning algorithms based on decision trees. The forecasting scheme employs the skforecast library from the Python environment, which facilitates the implementation of different schemes for both deterministic and probabilistic forecasting applications. Firstly, deterministic forecasting of hourly BIPV power was performed with XGBoost and Random Forest algorithms for different cases, showing an improvement in forecasting accuracy when some exogenous variables were used. Secondly, probabilistic forecasting was performed with XGBoost combined with the Bootstrap method. The results of this paper show the capabilities of Random Forest and gradient boosting algorithms, such as XGBoost, to work as regressors in time series forecasting of BIPV power. Mean absolute error in the deterministic forecast, using the most influencing exogenous variables, were around 40% and close below 30% for the south and east array, respectively.eng
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.doi10.3390/en16031495
dc.identifier.essn1996-1073
dc.identifier.officialurlhttps://doi.org/10.3390/en16031495
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103514
dc.journal.titleEnergies
dc.language.isoeng
dc.page.final1506
dc.page.initial1495
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PID2021-124910OB-C3
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.cdu728.036
dc.subject.cdu620.92
dc.subject.keywordBIPV
dc.subject.keywordPV power forecasting
dc.subject.keywordMachine learning
dc.subject.keywordGradient boosting algorithms
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica (Química)
dc.subject.unesco2212.03 Energía (Física)
dc.titleExploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods
dc.typejournal article
dc.type.hasVersionVOR
dc.volume.number16
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Energies16.pdf
Size:
7.16 MB
Format:
Adobe Portable Document Format

Collections