Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On the size of the sets of gradients of Bump functions and starlike bodies on the Hilbert space

Loading...
Thumbnail Image

Full text at PDC

Publication date

2002

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Société Mathématique de France
Citations
Google Scholar

Citation

Abstract

We study the size of the sets of gradients of bump functions on the Hilbert space l(2), and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in l(2) can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space l(2) can be uniformly approximated by C-1 smooth Lipschitz functions psi so that the cones generated by the ranges of its derivatives psi'(l(2)) have empty interior. This implies that there are C-1 smooth Lipschitz bumps in l(2) so that the cones generated by their sets of gradients have empty interior. On the other hand, we construct C-1-smooth bounded starlike bodies A subset of l(2), which approximate the unit ball, so that the cones generated by the hyperplanes which are tangent to A have empty interior as well. We also explain why this is the best answer to the above questions that one can expect.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections