Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A characterization of q-hyperelliptic compact planar Klein surfaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

1988

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Bujalance, E., & Etayo Gordejuela, J. J. «A Characterization of Q-Hyperelliptic Compact Planar Klein Surfaces». Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg, vol. 58, n.o 1, diciembre de 1988, pp. 95-102. DOI.org (Crossref), https://doi.org/10.1007/BF02941371.

Abstract

A compact Klein surface X is called q-hyperelliptic if there is an involution $\phi$ of X such that the quotient surface $X/<\phi >$ has algebraic genus q. If X is represented as D/$\Gamma$ where D is the unit disc and $\Gamma$ a non-Euclidean crystallographic group, then $<\phi >\cong \Gamma\sb 1/\Gamma$. Necessary and sufficient conditions on $\Gamma\sb 1$ are determined so that X is both planar (i.e. a two-sphere with holes) and q-hyperelliptic. One of the consequences of this is that the subspace of the Teichmüller space of those compact planar surfaces of fixed algebraic genus p which are q-hyperelliptic is a submanifold of dimension 2p-q-1 in the cases where $p>4q+1$. The methods involved are standard using the structure of NEC groups.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections