Ubiquity of Lojasiewicz’s example of a nonbasic semialgebraic set.

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T16:49:56Z
dc.date.available2023-06-20T16:49:56Z
dc.date.issued1994
dc.description.abstractLojasiewicz pointed out in 1965 that the semialgebraic set {x < 0}[{y < 0} in R2 is not basic: it is not the solution of a simultaneous system of inequalities. In this example the Zariski closure of the topological boundary crosses the set. The purpose of the present paper is to show that this is the only obstruction to a set being basic. A semialgebraic set S contained in a real algebraic set X in Rn is said to be generically basic if there are regular functions f1, . . . , fs, h on X, with h 6= 0, such that S \ {x 2 X | h(x) = 0} = {x 2 X | f1(x) > 0, . . . , fs(x) > 0} \ {x 2 X | h(x) = 0}. Let S be the interior of the closure of Int(S) \ Reg(X). The generic Zariski boundary @ZS of S is defined to be the Zariski closure of Reg(X) \ (S \S). One says that S is crossed by its generic Zariski boundary when (1) dim(S \ @ZS) = d − 1, and (1) S contains some regular points of @ZS of dimension d − 1. If Y is an irreducible algebraic set in Rm and f : Y ! X is a birational map, then the semialgebraic set f−1(S) is called a birational model of S. Theorem: A semialgebraic set S is generically basic if and only if no birational model of S is crossed by its generic Zariski boundary.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14840
dc.identifier.doi10.1307/mmj/1029005073
dc.identifier.issn0026-2285
dc.identifier.officialurlhttp://projecteuclid.org/mmj
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57171
dc.issue.number3
dc.journal.titleMichigan Mathematical Journal
dc.language.isoeng
dc.page.final472
dc.page.initial465
dc.publisherMichigan Mathematical Journal
dc.relation.projectIDPB 89-0379-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordGenerically basic semialgebraic set
dc.subject.keywordBirational model
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleUbiquity of Lojasiewicz’s example of a nonbasic semialgebraic set.
dc.typejournal article
dc.volume.number41
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
16.pdf
Size:
616.03 KB
Format:
Adobe Portable Document Format

Collections