Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorCarvalho, Alexandre N.
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T17:11:28Z
dc.date.available2023-06-20T17:11:28Z
dc.date.issued2000-11-20
dc.description.abstractThe motivations to study the problem considered in this paper come from the theory of composite materials, where the heat diffusion properties can change from one part of the domain to another. Mathematically, this leads to a nonlinear second-order parabolic equation for which the diffusion coefficient becomes large in a subdomain Ω 0 ⊂Ω . The equation is supplemented by a nonlinear boundary condition on ∂Ω and an initial condition. The authors determine the form of the limit problem (the so-called shadow system), which involves an evolution equation for the averages of the density over Ω 0 . The main results include global-in-time existence of solutions and upper semicontinuity of the associated global attractors when the system approaches the shadow system.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipCNPq (Brazil)
dc.description.sponsorshipFAPESP (Brazil)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19979
dc.identifier.doi10.1006/jdeq.2000.3876
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022039600938762
dc.identifier.relatedurlhttp://www.sciencedirect.com/science
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57917
dc.issue.number1
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final59
dc.page.initial33
dc.publisherElsevier
dc.relation.projectIDPB96-0648
dc.relation.projectID300.889/92-5
dc.relation.projectID#97/11323-0
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986
dc.subject.keywordSecond-order parabolic problems
dc.subject.keywordDiffusion coefficient becomes large in a Subregion of the domain
dc.subject.keywordAsymptotic-behavior
dc.subject.keywordEquations
dc.subject.keywordSystems
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleUpper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions
dc.typejournal article
dc.volume.number168
dcterms.referencesH. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis," Teubner Texte zur Mathematik, Vol. 133, pp. 9–126, Teubner, Leipzig, 1993. J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc. 352 (2000), 285–310. J. M. Arrieta, A. N. Carvalho, and A. Rodriguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), 376–406. J. M. Arrieta, A. N. Carvalho, and A. Rodriguez-Bernal, Attractors of parabolic problems whith nonlinear boundary conditions: Uniform bounds, Comm. Partial Differential Equations 25 (2000), 1–37. A. N. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Anal. 17 (1991), 1139–1151. A. N. Carvalho and A. L. Pereira, A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations, J. Differential Equations 112 (1994), 81–130. E. Conway, D. Hoff, and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1–16. J. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986), 455–466. J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, Vol. 25, Amer. Math. Soc., Providence, RI, 1988. J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations 73 (1988), 197–214. J. Hale and C. Rocha, Varying boundary conditions and large diffusivity, J. Math Pures Appl. 66 (1987), 139–158. J. K. Hale and K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations, Appl. Anal. 32 (1989), 287–303. D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981. O. Ladyzenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York, 1968. MR0244627 A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Math. Sci., Vol. 44, Springer-Verlag, New York, 1983. A. Rodriguez-Bernal, Localized spatial homogenization and large diffusion, SIAM J. Math. Anal. 29 (1998), 1361–1380.
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal43.pdf
Size:
234.88 KB
Format:
Adobe Portable Document Format

Collections