Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis of metallic nanoantennas for solar energy conversion

dc.book.titleNext Generation Technologies for Solar Energy Conversion VI
dc.contributor.authorMora Ventura, Brhayllan
dc.contributor.authorDíaz de León, Ramón
dc.contributor.authorGarcía Torales, Guillermo
dc.contributor.authorFlores, Jorge L.
dc.contributor.authorAlda, Javier
dc.contributor.authorGonzález, Francisco Javier
dc.date.accessioned2023-06-18T07:15:25Z
dc.date.available2023-06-18T07:15:25Z
dc.date.issued2015-09-04
dc.descriptionISSN: 0277-786X Copyright 2015. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.description.abstractRecently thermo-electrical nanoantennas, also known as Seebeck nanoantennas, have been proposed as an alternative for solar energy harvesting applications. In this work we present the optical and thermal analysis of metallic nanoantennas operating at infrared wavelengths, this study is performed by numerical simulations using COMSOL Multiphysics. Several different nanoantenna designs were analyzed including dipoles, bowties and square spiral antennas. Results show that metallic nanoantennas can be tuned to absorb electromagnetic energy at infrared wavelengths, and that numerical simulation can be useful in optimizing the performance of these types of nanoantennas at optical and infrared wavelengths.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACYT)
dc.description.sponsorshipUniversidad de Guadalajara
dc.description.sponsorshipUniversidad Autónoma de San Luis Potosí
dc.description.sponsorshipTerahertz Science and Technology National Lab (LANCYTT)
dc.description.sponsorshipCentro Mexicano de Innovación en Energía Solar
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38642
dc.identifier.doi10.1117/12.2188597
dc.identifier.isbn978-162841728-9
dc.identifier.officialurlhttp://dx.doi.org/10.1117/12.2188597
dc.identifier.relatedurlhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2437030
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24881
dc.issue.number9562
dc.language.isoeng
dc.page.initial95620P
dc.publication.placeBellingham (USA)
dc.publisherSPIE
dc.relation.ispartofseriesProceedings of SPIE
dc.relation.projectIDproject 32 of “Centro Mexicano de Innovación en Energía Solar”
dc.rights.accessRightsopen access
dc.subject.cdu537.8
dc.subject.cdu621.396.67
dc.subject.cdu620.91
dc.subject.keywordElectromagnetic radiation
dc.subject.keywordInfrared
dc.subject.keywordSolar energy conversion
dc.subject.keywordThermo-electrical nanoantennas
dc.subject.ucmElectromagnetismo
dc.subject.ucmFísica atmosférica
dc.subject.ucmÓptica física, óptica cuántica
dc.subject.unesco2202 Electromagnetismo
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.subject.unesco2209.19 Óptica física
dc.titleAnalysis of metallic nanoantennas for solar energy conversion
dc.typebook part
dcterms.references1. Garret M. and Sachit G., "Rectenna Solar Cells", New York: Springer, pp. 231-257, (2013). 2. Kotter D., Novack S., Slafer W., and Pinhero P., "Theory and manufacturing processes of Solar Nanoantenna Electromagnetic Collectors, " J. Sol. Energy Eng., vol. 132(1), pp.011014(9 pages), (2010). 3. Novotny L. and van Hulst N., "Antennas for light", Nat. Photonics,vol. 5, pp. 83-90, (2011). 4. Biagioni P, Huang JS, Hecht B., "Nanoantennas for visible and infrared radiation", Reports on Progress in Physics 75.2: 024402, (2012). 5. González F. J. and Boreman G., "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46(5), 418–428, (2005). 6. Hagerty J. A., Helmbrecht F. B., McCalpin W. H., Zane R., and Popovic Z. B., "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024, (2004). 7. Bean J.A., Tiwari B., Bernstein G.H., Fay P. and Porod W., "Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes," J. Vac. Sci. Technol. B, vol. 27(1), pp. 11-14, (2009). 8. Zhu Z., Joshi S., Grover S., and Moddel G., "Graphene Geometric Diodes for Terahertz Rectennas," J. Phys. D: Appl. Phys., vol. 46, pp. 185101 (2013). 9. B. Edgar, Alda Javier and G.Francisco J., "Conversion efficiency of broad-band rectenas for solar energy harvesting applications", Optics Express, vol. 21, Issue S3, pp. A412-A418 (2013). 10. Vandenbosch G. A. E. and Ma Z., "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy 1(3), 494–502 (2012). 11. Ma Z. and Vandenbosch G. A. E., "Optimal solar energy harvesting efficiency of nano-rectenna systems," Sol. Energy 88, 163–174 (2013). 12. Briones, E., et al, "Seebeck nanoantennas for the detection and characterization of infrared radiation," Optics express, 22(106), A1538-A1546 (2014). 13. Graf A., Arndt M., Sauer M. and Gerlach G., "Review of micromachined thermopiles for infrared detection," Meas. Sci. Technol., vol. 18, pp. R59–R75, (2007). 14. krenz P.M., Tiwari B.T., Szakmany G.P., Orlov A.O., Gonzalez F.G. and Boreman G.D., "Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching," J. Quantum Electron., vol. 48(5), pp. 659-664, May (2012). 15. Szakmany G.P., Krenz P.M., Orlov A.O., Bernstein G.H. and Porod W., "Antenna-Coupled Nanowire Thermocouples for Infrared Detection," IEEE Trans. Nanotechnol., vol. 12(2), pp. 163-167, March (2013). 16. Gonzalez F. J., Alda J., Simon J., Ginn J., and Boreman G., "The effect of metal dispersion on the resonance of antennas at infrared frequencies," Infrared Physics and Technology, vol. 52, no. 1, pp. 48-51, (2009). 17. Palik, Edward D. Handbook of optical constants of solids. Vol. 3. Academic press, (1998). 18. Ordal, Mark A., et al. "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W." Applied optics 24.24: 4493-4499 (1985). 19. Ordal, Mark A., et al. "Optical properties of Au, Ni, and Pb at submillimeter wavelengths." Applied Optics 26.4:744-752 (1987). 20. Kovetz A., "The Principles of Electromagnetic Theory", Cambridge University Press, Cambridge, UK (1990). 21. Incropera F. P. and De Witt D. P., "Fundamentals of Heat and Mass Transfer", 4th ed., John Wiley & Sons, New York (1996). 22. Cuadrado, Alda, J., and González, F. J., "Multiphysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared", Journal of Nanophotonics, 7(1), 073093-073093, (2013). 23. Ioffe, Abraham Fedorovich. "Semiconductor thermoelements and thermoelectric cooling." (1957). 24. Rowe, David Michael, ed. "Thermoelectrics handbook: macro to nano". CRC press, (2005). 25. Graf A., Arndt M., Sauer M., and Gerlach G., "Review of micromachined thermopiles for infrared detection," Meas. Sci. Technol. 18(7), R59–R75 (2007).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
analysis of metallic_ SPIE-2015-95620P.pdf
Size:
685.69 KB
Format:
Adobe Portable Document Format