Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polynomial compactness in Banach spaces

dc.contributor.authorBiström, Peter
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorLindström, Mikael
dc.date.accessioned2023-06-20T17:00:02Z
dc.date.available2023-06-20T17:00:02Z
dc.date.issued1998
dc.description.abstractWe investigate infinite dimensional Banach spaces equipped with the initial topology with respect to the continuous polynomials. We show nonlinear properties for this topology in both the real and the complex case. A new property for Banach spaces, polynomial Dunford-Pettis property, is introduced. For spaces with this property the compact sets in the topology induced by the polynomials are shown to be invariant under the summation map. For most real Banach spaces we characterize the polynomially compact sets as the bounded sets that are separated from zero by the positive polynomials.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16735
dc.identifier.doi10.1216/rmjm/1181071712
dc.identifier.issn0035-7596
dc.identifier.officialurlhttp://129.219.36.47/abstracts/rmj/vol28-4/bistpag1.pdf
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57601
dc.issue.number4
dc.journal.titleRocky Mountain Journal of Mathematics
dc.language.isoeng
dc.page.final1226
dc.page.initial1203
dc.publisherRocky Mt Math Consortium
dc.relation.projectIDGrant PB-0044
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordPolynomial compactness
dc.subject.keywordDunford-Pettis property
dc.subject.keywordnonlinear topology
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titlePolynomial compactness in Banach spaces
dc.typejournal article
dc.volume.number28
dcterms.referencesR. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinite many variables, Proc. Amer. Math. Soc. 90 (1984), 407- 411. R.M. Aron, Y.S. Choi and J.G. Llavona, Estimates by polynomials, preprint. R.M. Aron, B.J. Cole and T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51- 93. P. Biström, J.A. Jaramillo and M. Lindstr¨om, Algebras of real analytic functions; Homomorphisms and bounding sets, StudiaMath. 115 (1) (1995), 23- 37. F. Bombal, Operators on vector sequence spaces, Geometric aspects of Banach spaces, London Math. Soc. Lecture Notes Ser. 140 (1989), 94- 106. J.K. Brooks and P.W. Lewis, Operators on continuous function spaces and convergence in spaces of operators, Adv. Math. 29 (1978), 157 -177. T.K. Carne, B. Cole and T.W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639 -659. J.F. Castillo, On weakly-p-summable sequences in p(X) and C(K,X), preprint. J.F. Castillo and F. Sánchez, Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), 43- 59. ---- Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994), 256- 261. R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs Surveys Pure Appl. Math. 64 -1993. J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math. 92 -1984. S. Dineen, Holomorphy types on Banach spaces, Studia Math. 39 (1971), 240- 288. M. Fabian, D. Preiss, H.M. Whitfield and V.E. Zizler, Separating polynomials on Banach spaces, Quart. J. Math. Oxford 40 (1989), 409 -422. J. Farmer, Polynomial reflexivity in Banach spaces, Israel J.Math. 87 (1994), 257 273. J. Farmer and W.B. Johnson, Polynomial Schur and polynomial Dunford- Pettis properties, Contem. Math. 144 (1993), 95- 105. K. Floret, Weakly compact set, Lecture Notes in Math. 801 -1980. M. Garrido, J. G´omzez and J.A. Jaramillo, Homomorphisms on function algebras, Canad. J. Math. 46 (1994), 734 -745. M. González and J.M. Gutiérrez, Gantmacher type theorems for holomorphic mappings, preprint. M. Gonzalo and J.A. Jaramillo, Compact polynomials between Banach spaces, preprint. R. Gonzalo, Suavidad y polinomios en espacios de Banach, Ph.D. Thesis, Universidad Complutense de Madrid, 1994. P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Math. 1547, 1993. R.C. James, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409 -419. J.A. Jaramillo and A. Prieto, The weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463 -468. B. Josefson, Bounding subsets of l∞(A), J. Math. Pures Appl. (9) 57 (1978), 397-421. H. Knaust and E. Odell, Weakly null sequences with upper p-estimates, Lecture Notes in Math. 1047 (1991), 85 -107. L.G. Llavona, Approximation of continuously differentiable functions, North- Holland, Amsterdam, 1986. J. Mujica, Complex homomorphisms of the algebras of holomorphic functions on Fréchet spaces, Math. Ann. 241 (1979), 73- 82. G. Pisiser, Factorization of linear operators and geometry of Banach spaces, Amer. Math. Soc. 60, 1986. H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lp(ν), J. Funct. Anal. 4 (1969), 176- 214.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo32.pdf
Size:
77.78 KB
Format:
Adobe Portable Document Format

Collections