Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

DME: a full encryption, signature and KEM multivariate public key cryptosystem

dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorAvendaño González, Martín Eugenio
dc.date.accessioned2023-06-22T12:30:10Z
dc.date.available2023-06-22T12:30:10Z
dc.date.issued2022
dc.description.abstractDME is a multivariate public key cryptosystem based on the composition of linear and exponential maps that allow the polynomials of the public key to be of a very high degree. A previous version of DME ([3]) was presented to the NIST call for postquantum cryptosystems (in the KEM category), but it did not qualify to the second round. This new version of DME adds two extra rounds of exponentials to the first version, and only needs arithmetic in the finite fields Fq and Fq2, dispensing the need for the field Fq3.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75692
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72700
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.cdu003.26
dc.subject.ucmCibernética matemática
dc.subject.unesco1207.03 Cibernética
dc.titleDME: a full encryption, signature and KEM multivariate public key cryptosystem
dc.typejournal article
dcterms.references[1] J. Ding, D.r Schmidt: Solving degree and degree of regularity for polynomial systems over finite fields. Number theory and cryptography, pp. 34–49, Lecture Notes in Comput. Sci., 8260, Springer, Heidelberg, 2013. [2] J. Ding, C. Wolf, B. Yang: l-Invertible Cycles for Multivariate Quadratic (MQ) Public Key Cryptography. [3] I. Luengo: DME a public key, signature and KEM system based on double exponentiation with matrix exponents. Preprint 2017. https://csrc.nist.gov/CSRC/media/Presentations/DME/images-media/dme-April2018.pdf [4] J.C. Faugère, L. Perret.:An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography. Journal of Symbolic Computation 44 (2009) 1676–1689
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublication9b93a8cc-71d9-4f9b-b1e1-db5bafe21dad
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
luengo_dme.pdf
Size:
306.36 KB
Format:
Adobe Portable Document Format

Collections