DME: a full encryption, signature and KEM multivariate public key cryptosystem
dc.contributor.author | Luengo Velasco, Ignacio | |
dc.contributor.author | Avendaño González, Martín Eugenio | |
dc.date.accessioned | 2023-06-22T12:30:10Z | |
dc.date.available | 2023-06-22T12:30:10Z | |
dc.date.issued | 2022 | |
dc.description.abstract | DME is a multivariate public key cryptosystem based on the composition of linear and exponential maps that allow the polynomials of the public key to be of a very high degree. A previous version of DME ([3]) was presented to the NIST call for postquantum cryptosystems (in the KEM category), but it did not qualify to the second round. This new version of DME adds two extra rounds of exponentials to the first version, and only needs arithmetic in the finite fields Fq and Fq2, dispensing the need for the field Fq3. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75692 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/72700 | |
dc.language.iso | eng | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 003.26 | |
dc.subject.ucm | Cibernética matemática | |
dc.subject.unesco | 1207.03 Cibernética | |
dc.title | DME: a full encryption, signature and KEM multivariate public key cryptosystem | |
dc.type | journal article | |
dcterms.references | [1] J. Ding, D.r Schmidt: Solving degree and degree of regularity for polynomial systems over finite fields. Number theory and cryptography, pp. 34–49, Lecture Notes in Comput. Sci., 8260, Springer, Heidelberg, 2013. [2] J. Ding, C. Wolf, B. Yang: l-Invertible Cycles for Multivariate Quadratic (MQ) Public Key Cryptography. [3] I. Luengo: DME a public key, signature and KEM system based on double exponentiation with matrix exponents. Preprint 2017. https://csrc.nist.gov/CSRC/media/Presentations/DME/images-media/dme-April2018.pdf [4] J.C. Faugère, L. Perret.:An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography. Journal of Symbolic Computation 44 (2009) 1676–1689 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce | |
relation.isAuthorOfPublication | 9b93a8cc-71d9-4f9b-b1e1-db5bafe21dad | |
relation.isAuthorOfPublication.latestForDiscovery | 2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce |
Download
Original bundle
1 - 1 of 1