Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A nonvanishing spectral gap for AKLT models on generalized decorated graphs

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
Citations
Google Scholar

Citation

A. Lucia, and A. Young, “A nonvanishing spectral gap for AKLT models on generalized decorated graphs,” Journal of Mathematical Physics 64(4), 041902 (2023).

Abstract

We consider the spectral gap question for Affleck, Kennedy, Lieb, and Tasaki models defined on decorated versions of simple, connected graphs G. This class of decorated graphs, which are defined by replacing all edges of G with a chain of n sites, in particular includes any decorated multi-dimensional lattice. Using the Tensor Network States approach from [Abdul-Rahman et al., Analytic Trends in Mathematical Physics, Contemporary Mathematics (American Mathematical Society, 2020), Vol. 741, p. 1.], we prove that if the decoration parameter is larger than a linear function of the maximal vertex degree, then the decorated model has a nonvanishing spectral gap above the ground state energy.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections