Stabilization of Infinite-Layer NdNi<sub>1–<i>x</i></sub>Al<sub><i>x</i></sub>O<sub>2</sub> nickelates containing monovalent Ni as bulk polycrystalline materials

dc.contributor.authorGainza, Javier
dc.contributor.authorLópez, Carlos A.
dc.contributor.authorSilva, Romualdo S.
dc.contributor.authorSerrano Sánchez, Federico
dc.contributor.authorRodrigues, João Elias F. S.
dc.contributor.authorSkorynina, Alina
dc.contributor.authorRosa, Angelika D.
dc.contributor.authorNemes, Norbert Marcel
dc.contributor.authorBiskup Zaja, Nevenko
dc.contributor.authorFernández Díaz, María T.
dc.contributor.authorMartínez, José Luis
dc.contributor.authorAlonso, José Antonio
dc.date.accessioned2025-10-21T18:21:42Z
dc.date.available2025-10-21T18:21:42Z
dc.date.issued2025-06-25
dc.description© 2025 The Authors HC-5817.
dc.description.abstractThe series of RNiO2 (where R is a rare-earth element) oxides with infinite-layer structure constitutes a novel family of high-temperature superconductors, with the same structural framework as the well-known high-Tc cuprates but with Ni instead of Cu for the covalent matrix. Despite these similarities, superconductivity has only been described in nickelates in thin films, but its origin remains controversial, being associated either with a reduction of Ni or with the stress effect in the monolayer. In the present work, we have successfully synthesized infinite-layer bulk samples with nominal formulas NdNiO2 and NdNi0.9Al0.1O2+δ, by topotactic reduction from the corresponding “oxidized” perovskites with NdNi1–xAlxO3 (x = 0, 0.1) stoichiometry. We show that the substitution of 10% Al at the octahedral Ni positions contributes to the stabilization of the infinite-layer structure. Indeed, the topotactic removal of axial oxygen atoms on the [NiO6] octahedra leads to a chemical reduction of Ni3+ to Ni+ and thus, in the absence of unreducible Al atoms, to structural instabilities. Synchrotron X-ray diffraction (SXRD) data, collected after treatment at increasing temperatures and therefore increasingly reducing conditions, permitted us to unveil the structural evolution upon oxygen removal. Additional neutron diffraction measurements allowed the axial oxygen content to be assessed and revealed an almost monovalent oxidation state for Ni in the Al-containing sample. In addition, the neutron data evidenced the absence of occluded, long-range ordered hydrogen in the crystal structure, consistent with observations on LaNiO2 materials. Spectroscopic results from X-ray absorption spectroscopy (XAS) show that Ni ions are indeed reduced to the Ni+ oxidation state, in agreement with the crystallochemical data of NdNiO2. The local atomic structure around the Ni absorber was evaluated using the EXAFS technique and showed that Al doping enhances the rigidity of the Ni–O bonds and medium-range interactions within the Ni–Nd sublattice. Magnetic measurements could not provide evidence of superconductivity, as susceptibility is masked by the presence of tiny amounts of Ni metal.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyInstituto Pluridisciplinar (IP)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipEuropean Synchrotron Radiation Facility
dc.description.statuspub
dc.identifier.citationGainza, J.; López, C. A.; Silva, R. S.; Serrano-Sánchez, F.; Rodrigues, J. E. F. S.; Skorynina, A.; Rosa, A. D.; Nemes, N. M.; Biškup, N.; Fernández-Díaz, M. T.; Martínez, J. L.; Alonso, J. A. Stabilization of Infinite-Layer NdNi 1– x Al x O2 Nickelates Containing Monovalent Ni as Bulk Polycrystalline Materials. Chem. Mater. 2025, 37 (13), 4729–4742. https://doi.org/10.1021/acs.chemmater.5c00507.
dc.identifier.doi10.1021/acs.chemmater.5c00507
dc.identifier.essn1520-5002
dc.identifier.issn0897-4756
dc.identifier.officialurlhttps://doi.org/10.1021/acs.chemmater.5c00507
dc.identifier.relatedurlhttps://pubs.acs.org/doi/10.1021/acs.chemmater.5c00507
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125217
dc.issue.number13
dc.journal.titleChemistry of Materials
dc.language.isoeng
dc.page.final4742
dc.page.initial4729
dc.publisherAmerican Chemical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122477OB-I00/ES/MATERIALES PARA APLICACIONES EN ENERGIA: PNICTUROS, CALCOGENUROS, OXIDOS Y HALUROS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129254B–C21/ES/CONTROL ATOMÍSTICO DE MATERIALES PARA LA ENERGÍA
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122980OB-C51/ES/ESTUDIOS DE FENOMENOS ATOMISTICOS EN MATERIALES MULTIFUNCIONALES A TRAVES DE TECNICAS IN-SITU/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129254B–C22/ES/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu538.9
dc.subject.keywordDebye-waller factor
dc.subject.keywordHigh-pressure
dc.subject.keywordSuperconductivity
dc.subject.keywordNdNiO3
dc.subject.keywordPhase
dc.subject.ucmFísica de materiales
dc.subject.unesco2211 Física del Estado Sólido
dc.titleStabilization of Infinite-Layer NdNi<sub>1–<i>x</i></sub>Al<sub><i>x</i></sub>O<sub>2</sub> nickelates containing monovalent Ni as bulk polycrystalline materials
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number37
dspace.entity.typePublication
relation.isAuthorOfPublication697f3953-540b-435a-afc9-ec307315d667
relation.isAuthorOfPublication671e957a-9daa-4bd5-9876-eee854146782
relation.isAuthorOfPublication.latestForDiscovery697f3953-540b-435a-afc9-ec307315d667

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chem. Mater. 2025, 37, 4729−4742.pdf
Size:
8.48 MB
Format:
Adobe Portable Document Format

Collections