On nuclearity of embeddings between Besov spaces
Loading...
Download
Official URL
Full text at PDC
Publication date
2018
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Let Bp,qs,α(Ω) be the Besov space with classical smoothness s and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in Rd. For s1, s2 ∈ R, 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1 − s2 = d − d(1/p2 − 1/p1)+, we show a sufficient condition on q1, q2 for nuclearity of embedding Bs1,α1 (superíndices) y p1, q1 (subíndices)(Ω) → Bp2,α2 (superíndice) y s2 q,2 (subíndices) (Ω). We also show that the condition is necessary in a wide range of parameters.