Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Object based Bayesian full-waveform inversion for shear elastography

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorCebrián, Elena
dc.contributor.authorGutiérrez, Andrea
dc.date.accessioned2024-01-18T15:49:45Z
dc.date.available2024-01-18T15:49:45Z
dc.date.issued2023-06-06
dc.description.abstractWe develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues. We adopt a Bayesian inference formulation. Given the observed data, a forward model and their uncertainties, we find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli. To construct a prior probability, we exploit the topological energies of associated objective functions. We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes. Sampling the posterior distribution by Markov Chain Monte Carlo (MCMC) techniques we obtain statistical information on the shear moduli and the geometrical properties of the anomalies. General affine-invariant ensemble MCMC samplers are adequate for shapes characterized by parameter sets of low to moderate dimension. However, MCMC methods are computationally expensive. For simple shapes, we devise a fast optimization scheme to calculate the maximum a posteriori (MAP) estimate representing the most likely parameter values. Then, we approximate the posterior distribution by a Gaussian distribution found by linearization about the MAP point to capture the main mode at a low computational cost.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.citationCarpio Rodríguez, A. M., Cebrián, E. y Gutiérrez, A. «Object based Bayesian full-waveform inversion for shear elastography». Inverse Problems, vol. 39, n.o 7, julio de 2023, p. 075007. DOI.org (Crossref), https://doi.org/10.1088/1361-6420/acd5f8.
dc.identifier.doi10.1088/1361-6420/acd5f8
dc.identifier.issn0266-5611
dc.identifier.issn1361-6420
dc.identifier.officialurlhttps//doi.org/10.1088/1361-6420/acd5f8
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/1361-6420/acd5f8
dc.identifier.urihttps://hdl.handle.net/20.500.14352/93910
dc.issue.number7
dc.journal.titleInverse Problems
dc.language.isoeng
dc.page.initial075007 (28)
dc.publisherIOP Publishing
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84446-C2-1-R/ES/MODELOS MATEMATICOS Y TECNICAS PARA AGREGADOS CELULARES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112796RB-C21/ES/METODOS Y MODELOS MATEMATICOS PARA APLICACIONES BIOMEDICAS/
dc.rights.accessRightsopen access
dc.subject.keywordInverse scattering
dc.subject.keywordFull waveform inversion
dc.subject.keywordTopological energy
dc.subject.keywordBayesian inference
dc.subject.keywordMarkov Chain Monte Carlo
dc.subject.keywordPDE constrained optimization
dc.subject.keywordLaplace approximation
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleObject based Bayesian full-waveform inversion for shear elastographyen
dc.typejournal article
dc.volume.number39
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Carpio_2023_Inverse_Problems_39_075007.pdf
Size:
8.87 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2305.06646.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections