Feshbach-type resonances for two-particle scattering in graphene
Loading...
Download
Official URL
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citation
Abstract
Two-particle scattering in graphene is a multichannel problem, where the energies of the identical or opposite-helicity channels lie in disjoint energy segments. Due to the absence of Galilean invariance, these segments depend on the total momentum Q. The dispersion relations for the two opposite-helicity scattering channels are analogous to those of two one-dimensional tight-binding lattices with opposite dispersion relations, which are known to easily bind states at their edges. When an s-wave separable interaction potential is assumed, those bound states reveal themselves as three Feshbach resonances in the identical-helicity channel. In the limit Q -> 0, one of the resonances survives and the opposite-helicity scattering amplitudes vanish.
Description
© 2014 American Physical Society.
The authors thank F. Guinea and N. Zinner for helpful comments. This work was supported by MINECO through Grants No. FIS2010-21372 and No. MAT2010-17180, by Comunidad de Madrid through Grant Microseres-CM, and by the EU through Marie Curie ITN NanoCTM. Research of C.G. was supported by a PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM).













