Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Combining wavelet transform with convolutional neural networks for hypoglycemia events prediction from CGM data

dc.contributor.authorAlvarado, Jorge
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorChávez de la O, Francisco
dc.contributor.authorFernández de Vega, Francisco
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T18:47:21Z
dc.date.available2025-01-30T18:47:21Z
dc.date.issued2023-12-15
dc.description.abstractEstimating future blood glucose levels is an essential and challenging task for people with diabetes. It must be carried out based on variables such as current glucose, carbohydrate intake, physical activity, and insulin dosing. Accurate estimation is essential to maintain glucose values in a healthy range and avoid dangerous events of low glucose levels (hypoglycemia) and extremely high glucose values (hyperglycemia). Those situations maintained in time can cause not only permanent long-term damage but also short-term complications and even the death of the person. This paper proposes a new method to predict and detect hypoglycemic events over a 24-h time horizon. The technique combines applying the wavelet transform to glucose time series and deep learning convolutional neural networks. We have experimented with real data collected from 20 different people with type 1 diabetes. Our technique can also be applied to predict hyperglycemia. We incorporate a data augmentation technique consisting of a rolling windows system that improves the accuracy of the prediction. The uncertainty of the data is considered by the addition of controlled noise. The results show that the predictions obtained are accurate (higher than 88% of accuracy, sensitivity, specificity, and precision), confirming the effectiveness of the proposed method.eng
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades(España)
dc.description.sponsorshipJunta de Extremadura
dc.description.sponsorshipUnión Europea
dc.description.sponsorshipFundación Eugenio Rodriíguez Pascual
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationJorge Alvarado, J. Manuel Velasco, Francisco Chavez, Francisco Fernández-de-Vega, J. Ignacio Hidalgo, Combining wavelet transform with convolutional neural networks for hypoglycemia events prediction from CGM data, Chemometrics and Intelligent Laboratory Systems, Volume 243, 2023, 105017, ISSN 0169-7439, https://doi.org/10.1016/j.chemolab.2023.105017. (https://www.sciencedirect.com/science/article/pii/S0169743923002678)
dc.identifier.doi10.1016/J.CHEMOLAB.2023.105017
dc.identifier.issn0169-7439
dc.identifier.officialurlhttps://doi.org/10.1016/j.chemolab.2023.105017
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0169743923002678?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117453
dc.journal.titleChemometrics and Intelligent Laboratory Systems
dc.language.isoeng
dc.page.final17
dc.page.initial5
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2021-125549OB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/PDC2022-133429-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2020-115570GB-C21
dc.relation.projectIDinfo:eu-repo/grantAgreement/Y2018/NMT-4668
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004
dc.subject.cdu616
dc.subject.keywordDiabetes
dc.subject.keywordGlucose prediction
dc.subject.keywordDeep learning
dc.subject.keywordWavelet transform
dc.subject.ucmInformática (Informática)
dc.subject.ucmEndocrinología
dc.subject.unesco3314.99 Otras
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleCombining wavelet transform with convolutional neural networks for hypoglycemia events prediction from CGM data
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number243
dspace.entity.typePublication
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscoveryce8731c7-a3bb-4010-98d9-e9b72622941b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0.pdf
Size:
3.2 MB
Format:
Adobe Portable Document Format

Collections