Intrinsically chiral paddlewheel diruthenium complexes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2024

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Citations
Google Scholar

Citation

CrystEngComm, 2024, 26, 6739

Abstract

A family of heteroleptic paddlewheel diruthenium complexes has been designed to obtain a chiral arrangement of the donor atoms of their equatorial ligands around the metal–metal bond axis. In order to do so, the non-symmetric ligands 2-hydroxy-6-methylpyridinate (hmp) and 2-amino-6-methylpyridinate (amp) were employed to obtain the following four axially chiral compounds: cis-[Ru2Cl(μ-DPhF)2(μ-hmp) (μ-OAc)] (Ruhmp), cis-[Ru2Cl(μ-DPhF)2(μ-amp)(μ-OAc)] (Ruamp), cis-[Ru2Cl(μ-DAniF)2(μ-hmp)(μ-OAc)] (Ru′ hmp) and cis-[Ru2Cl(μ-DAniF)2(μ-amp)(μ-OAc)] (Ru′amp) (DPhF = N,N′-diphenylformamidinate, DAniF = N, N′-bis(p-methoxyphenyl)formamidinate). All the compounds were studied by single crystal X-ray diffraction, confirming that a racemic mixture containing only one of the two possible regioisomers was obtained in all cases. A general nomenclature system for naming the full configuration of intrinsically chiral paddlewheel molecules is proposed using the C/A convention. In addition, electronic spectroscopy and cyclic voltamperometry data demonstrate the electronic tunable nature of this new platform. Overall, these results provide a novel example of robust and tunable chirality, which is of potential interest to be further exploited.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections