Regularity and explicit L∞ estimates for a class of nonlinear elliptic systems
dc.contributor.author | Chhetri, Maya | |
dc.contributor.author | Mavinga, Nsoki | |
dc.contributor.author | Pardo San Gil, Rosa María | |
dc.date.accessioned | 2025-05-16T11:25:51Z | |
dc.date.available | 2025-05-16T11:25:51Z | |
dc.date.issued | 2025 | |
dc.description.abstract | We use De Giorgi-Nash-Moser iteration scheme to establish that weak solutions to a coupled system of elliptic equations with critical growth on the boundary are in L∞(Ω). Moreover, we provide an explicit L∞(Ω)- estimate of weak solutions with subcritical growth on the boundary, in terms of powers of H1(Ω)-norms, by combining the elliptic regularity of weak solutions with Gagliardo--Nirenberg interpolation inequality. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | unpub | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/120140 | |
dc.language.iso | eng | |
dc.rights | Attribution-NonCommercial 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.keyword | A priori estimates in context of PDEs | |
dc.subject.keyword | Partial differential equations | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Regularity and explicit L∞ estimates for a class of nonlinear elliptic systems | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b61446bc-a011-4f38-9387-63e24d811d3a | |
relation.isAuthorOfPublication.latestForDiscovery | b61446bc-a011-4f38-9387-63e24d811d3a |
Download
Original bundle
1 - 1 of 1