Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

The Berry-Tabor conjecture for spin chains of Haldane-Shastry type

dc.contributor.authorBarba, J. C.
dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T10:56:52Z
dc.date.available2023-06-20T10:56:52Z
dc.date.issued2008-07
dc.description©EPLA, 2008. This work was partially supported by the DGI under grant no. FIS2005-00752, and by the Complutense University and the DGUI under grant no. GR74/07-910556. JCB acknowledges the financial support of the Spanish Ministry of Education and Science through an FPU scholarship.
dc.description.abstractAccording to a long-standing conjecture of Berry and Tabor, the distribution of the spacings between consecutive levels of a "generic" integrable model should follow Poisson's law. In contrast, the spacings distribution of chaotic systems typically follows Wigner's law. An important exception to the Berry-Tabor conjecture is the integrable spin chain with long-range interactions introduced by Haldane and Shastry in 1988, whose spacings distribution is neither Poissonian nor of Wigner's type. In this letter we argue that the cumulative spacings distribution of this chain should follow the "square root of a logarithm" law recently proposed by us as a characteristic feature of all spin chains of Haldane-Shastry type. We also show in detail that the latter law is valid for the rational counterpart of the Haldane-Shastry chain introduced by Polychronakos.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI, Spain
dc.description.sponsorshipComplutense University
dc.description.sponsorshipDGUI, Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31355
dc.identifier.doi10.1209/0295-5075/83/27005
dc.identifier.issn0295-5075
dc.identifier.officialurlhttp://dx.doi.org/10.1209/0295-5075/83/27005
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/0804.3685
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51496
dc.issue.number2
dc.journal.titleEPL
dc.language.isoeng
dc.publisherEPL Association, European Physical Society
dc.relation.projectIDFIS2005-00752
dc.relation.projectIDGR74/07-910556
dc.relation.projectIDFPU scholarship
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThe Berry-Tabor conjecture for spin chains of Haldane-Shastry type
dc.typejournal article
dc.volume.number83
dcterms.references[1] Guhr T., Müller-Groeling A. and Weidenmuller H. A., Phys. Rep., 299 (1998) 189. [2] Mehta M. L., Random Matrices, 3rd edition (Elsevier, San Diego) 2004. [3] Berry M. V. and Tabor M., Proc. R. Soc. London, Ser. A, 356 (1977) 375. [4] Poilblanc D., Ziman T., Bellissard J., Mila F. and Montambaux J., Europhys. Lett., 22 (1993) 537. [5] D’Auriac J.-C. A., Maillard J.-M. and Viallet C. M., J. Phys. A: Math. Gen., 35 (2002) 4801. [6] Finkel F. and González-López A., Phys. Rev. B, 72 (2005) 174411. [7] Haldane F. D. M., Phys. Rev. Lett., 60 (1988) 635. [8] Shastry B. S., Phys. Rev. Lett., 60 (1988) 639. [9] Polychronakos A. P., Phys. Rev. Lett., 70 (1993) 2329. [10] Hubbard J., Proc. R. Soc. London, Ser. A, 276 (1963) 238. [11] Gutzwiller M. C., Phys. Rev. Lett., 10 (1963) 159. [12] Gebhard F. and Vollhardt D., Phys. Rev. Lett., 59 (1987) 1472. [13] Sutherland B., Phys. Rev. A, 4 (1971) 2019. [14] Sutherland B., Phys. Rev. A, 5 (1972) 1372. [15] Ha Z. N. C. and Haldane F. D. M., Phys. Rev. B, 46 (1992) 9359. [16] Hikami K. and Wadati M., J. Phys. Soc. Jpn., 62 (1993) 469. [17] Minahan J. A. and Polychronakos A. P., Phys. Lett. B, 302 (1993) 265. [18] Olshanetsky M. A. and Perelomov A. M., Phys. Rep., 94 (1983) 313. [19] Calogero F., J. Math. Phys., 12 (1971) 419. [20] Frahm H., J. Phys. A: Math. Gen., 26 (1993) L473. [21] Calogero F., Lett. Nuovo Cimento, 20 (1977) 251. [22] Haake F., Quantum Signatures of Chaos, 2nd edition (Springer-Verlag, Berlin) 2001. [23] Basu-Mallick B. and Bondyopadhaya N., Nucl. Phys. B, 757 (2006) 280. [24] Barba J. C., Finkel F., González-López A. and Rodríguez M. A., Phys. Rev. B, 77 (2008) 214422. [25] Yamamoto T. and Tsuchiya O., J. Phys. A: Math. Gen., 29 (1996) 3977. [26] Polychronakos A. P., Nucl. Phys. B, 419 (1994) 553. [27] Basu-Mallick B., Ujino H. and Wadati M., J. Phys. Soc. Jpn., 68 (1999) 3219. [28] Basu-Mallick B., Bondyopadhaya N. and Sen D., Nucl. Phys. B, 795 (2008) 596. [29] Ahmed S., Bruschi M., Calogero F., Olshanetsky M. A. and Perelomov A. M., Nuovo Cimento B, 49 (1979) 173. [30] Enciso A., Finkel F., González-López A. and Rodríguez M. A., Nucl. Phys. B, 707 (2005) 553. [31] Haldane F. D. M., Ha Z. N. C., Talstra J. C., Bernard D. and Pasquier V., Phys. Rev. Lett., 69 (1992) 2021.
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkelpreprint.pdf
Size:
530.03 KB
Format:
Adobe Portable Document Format

Collections