The Berry-Tabor conjecture for spin chains of Haldane-Shastry type
dc.contributor.author | Barba, J. C. | |
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T10:56:52Z | |
dc.date.available | 2023-06-20T10:56:52Z | |
dc.date.issued | 2008-07 | |
dc.description | ©EPLA, 2008. This work was partially supported by the DGI under grant no. FIS2005-00752, and by the Complutense University and the DGUI under grant no. GR74/07-910556. JCB acknowledges the financial support of the Spanish Ministry of Education and Science through an FPU scholarship. | |
dc.description.abstract | According to a long-standing conjecture of Berry and Tabor, the distribution of the spacings between consecutive levels of a "generic" integrable model should follow Poisson's law. In contrast, the spacings distribution of chaotic systems typically follows Wigner's law. An important exception to the Berry-Tabor conjecture is the integrable spin chain with long-range interactions introduced by Haldane and Shastry in 1988, whose spacings distribution is neither Poissonian nor of Wigner's type. In this letter we argue that the cumulative spacings distribution of this chain should follow the "square root of a logarithm" law recently proposed by us as a characteristic feature of all spin chains of Haldane-Shastry type. We also show in detail that the latter law is valid for the rational counterpart of the Haldane-Shastry chain introduced by Polychronakos. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI, Spain | |
dc.description.sponsorship | Complutense University | |
dc.description.sponsorship | DGUI, Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31355 | |
dc.identifier.doi | 10.1209/0295-5075/83/27005 | |
dc.identifier.issn | 0295-5075 | |
dc.identifier.officialurl | http://dx.doi.org/10.1209/0295-5075/83/27005 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/0804.3685 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51496 | |
dc.issue.number | 2 | |
dc.journal.title | EPL | |
dc.language.iso | eng | |
dc.publisher | EPL Association, European Physical Society | |
dc.relation.projectID | FIS2005-00752 | |
dc.relation.projectID | GR74/07-910556 | |
dc.relation.projectID | FPU scholarship | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | The Berry-Tabor conjecture for spin chains of Haldane-Shastry type | |
dc.type | journal article | |
dc.volume.number | 83 | |
dcterms.references | [1] Guhr T., Müller-Groeling A. and Weidenmuller H. A., Phys. Rep., 299 (1998) 189. [2] Mehta M. L., Random Matrices, 3rd edition (Elsevier, San Diego) 2004. [3] Berry M. V. and Tabor M., Proc. R. Soc. London, Ser. A, 356 (1977) 375. [4] Poilblanc D., Ziman T., Bellissard J., Mila F. and Montambaux J., Europhys. Lett., 22 (1993) 537. [5] D’Auriac J.-C. A., Maillard J.-M. and Viallet C. M., J. Phys. A: Math. Gen., 35 (2002) 4801. [6] Finkel F. and González-López A., Phys. Rev. B, 72 (2005) 174411. [7] Haldane F. D. M., Phys. Rev. Lett., 60 (1988) 635. [8] Shastry B. S., Phys. Rev. Lett., 60 (1988) 639. [9] Polychronakos A. P., Phys. Rev. Lett., 70 (1993) 2329. [10] Hubbard J., Proc. R. Soc. London, Ser. A, 276 (1963) 238. [11] Gutzwiller M. C., Phys. Rev. Lett., 10 (1963) 159. [12] Gebhard F. and Vollhardt D., Phys. Rev. Lett., 59 (1987) 1472. [13] Sutherland B., Phys. Rev. A, 4 (1971) 2019. [14] Sutherland B., Phys. Rev. A, 5 (1972) 1372. [15] Ha Z. N. C. and Haldane F. D. M., Phys. Rev. B, 46 (1992) 9359. [16] Hikami K. and Wadati M., J. Phys. Soc. Jpn., 62 (1993) 469. [17] Minahan J. A. and Polychronakos A. P., Phys. Lett. B, 302 (1993) 265. [18] Olshanetsky M. A. and Perelomov A. M., Phys. Rep., 94 (1983) 313. [19] Calogero F., J. Math. Phys., 12 (1971) 419. [20] Frahm H., J. Phys. A: Math. Gen., 26 (1993) L473. [21] Calogero F., Lett. Nuovo Cimento, 20 (1977) 251. [22] Haake F., Quantum Signatures of Chaos, 2nd edition (Springer-Verlag, Berlin) 2001. [23] Basu-Mallick B. and Bondyopadhaya N., Nucl. Phys. B, 757 (2006) 280. [24] Barba J. C., Finkel F., González-López A. and Rodríguez M. A., Phys. Rev. B, 77 (2008) 214422. [25] Yamamoto T. and Tsuchiya O., J. Phys. A: Math. Gen., 29 (1996) 3977. [26] Polychronakos A. P., Nucl. Phys. B, 419 (1994) 553. [27] Basu-Mallick B., Ujino H. and Wadati M., J. Phys. Soc. Jpn., 68 (1999) 3219. [28] Basu-Mallick B., Bondyopadhaya N. and Sen D., Nucl. Phys. B, 795 (2008) 596. [29] Ahmed S., Bruschi M., Calogero F., Olshanetsky M. A. and Perelomov A. M., Nuovo Cimento B, 49 (1979) 173. [30] Enciso A., Finkel F., González-López A. and Rodríguez M. A., Nucl. Phys. B, 707 (2005) 553. [31] Haldane F. D. M., Ha Z. N. C., Talstra J. C., Bernard D. and Pasquier V., Phys. Rev. Lett., 69 (1992) 2021. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1