Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deformation-Controlled Design of Metallic Nanocomposites

dc.contributor.authorYavas, Hakan
dc.contributor.authorFraile, Alberto
dc.contributor.authorHuminiuc, Teodor
dc.contributor.authorSener Sen, Huseyin
dc.contributor.authorFrutos Torres, Emilio
dc.contributor.authorPolcar, Tomaš
dc.date.accessioned2025-01-17T09:11:16Z
dc.date.available2025-01-17T09:11:16Z
dc.date.issued2019-11-15
dc.description.abstractAchieving the theoretical strength of a metallic alloy material is a demanding task that usually requires utilizing one or more of the well-established routes: (1) Decreasing the grain size to stop or slow down the dislocation mobility, (2) adding external barriers to dislocation pathways, (3) altering the crystal structure, or (4) combining two of the previous discrete strategies, that is, implementing crystal seeds into an amorphous matrix. Each of the outlined methods has clear limitations; hence, further improvements are required. We present a unique approach that envelops all the different strength-building strategies together with a new phenomenon–phase transition. We simulated the plastic deformation of a Zr–Nb nanolayered alloy using molecular dynamics and ab initio methods and observed the transition of Zr from hexagonal close-packed to face-centered cubic and then to body-cenetered cubic during compression. The alloy, which was prepared by magnetron sputtering, exhibited near-theoretical hardness (10.8 GPa) and the predicted transition of the Zr structure was confirmed. Therefore, we have identified a new route for improving the hardness of metallic alloys.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes
dc.description.statuspub
dc.identifier.citationDeformation-Controlled Design of Metallic Nanocomposites Hakan Yavas, Alberto Fraile, Teodor Huminiuc, Huseyin Sener Sen, Emilio Frutos, and Tomas Polcar ACS Applied Materials & Interfaces 2019 11 (49), 46296-46302 DOI: 10.1021/acsami.9b12235
dc.identifier.doi10.1021/acsami.9b12235
dc.identifier.officialurlhttps://doi.org/10.1021/acsami.9b12235
dc.identifier.relatedurlhttps://pubs.acs.org/doi/10.1021/acsami.9b12235#
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114849
dc.issue.number49
dc.journal.titleApplied Materials & Interfaces
dc.language.isoeng
dc.publisherACS Publications
dc.relation.projectIDGACR 17-17921S
dc.relation.projectIDCZ.02.1.01/0.0/0.0/16_026/0008396
dc.relation.projectIDEP/K040375/1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu620
dc.subject.keywordNanolayered materials
dc.subject.keywordMetallic alloy
dc.subject.keywordPhase transition
dc.subject.keywordInterfaces
dc.subject.keywordCoating
dc.subject.ucmCiencias
dc.subject.unesco23 Química
dc.titleDeformation-Controlled Design of Metallic Nanocomposites
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication6f27a676-60ef-4389-bee5-e995548a750b
relation.isAuthorOfPublication.latestForDiscovery6f27a676-60ef-4389-bee5-e995548a750b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deformation-Controlled Design of Metallic Nanocomposites.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections