Linear systems of rational curves on rational surfaces

dc.contributor.authorDaigle, Daniel
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-20T03:31:54Z
dc.date.available2023-06-20T03:31:54Z
dc.date.issued2012
dc.description.abstractGiven a curve C on a projective nonsingular rational surface S, over an algebraically closed eld of characteristic zero, we are interested in the set C of linear systems L on S satisfying C 2 L, dimL 1, and the general member of L is a rational curve. The main result of the paper gives a complete description of C and, in particular, characterizes the curves C for which C is non empty
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSERC Canada
dc.description.sponsorshipMTM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20763
dc.identifier.issn1609-3321
dc.identifier.officialurlhttp://www.ams.org/distribution/mmj/vol12-2-2012/daigle-melle-hernandez.pdf
dc.identifier.relatedurlhttp://www.mathjournals.org/mmj/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43743
dc.issue.number2
dc.journal.titleMoscow Mathematical Journal
dc.language.isoeng
dc.page.final268
dc.page.initial261
dc.publisherIndependent University of Moscow
dc.relation.projectIDMTM2010-21740-C02-01
dc.relation.projectIDGrupo Singular CCG07-UCM/ESP-2695-921020
dc.rights.accessRightsrestricted access
dc.subject.cdu512.772
dc.subject.keywordrational curves
dc.subject.keywordrational surfaces
dc.subject.keywordlinear systems
dc.subject.keywordweighted cluster of singular points
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleLinear systems of rational curves on rational surfaces
dc.typejournal article
dc.volume.number12
dcterms.referencesM. Alberich-Carrami˜nana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002. D. Daigle and A. Melle-Hern´andez, Linear systems associated to unicuspidal rational plane curves, in preparation. M. H. Gizatullin, Affine surfaces that can be augmented by a nonsingular rational curve., Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778–802 (Russian).English translation: Math. USSR-Izv., 4 1970, 787–810. Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam, 1974.Translated from Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4. M. Miyanishi, Curves on rational and unirational surfaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 60, Tata Institute of Fundamental Research, Bombay, 1978.
dspace.entity.typePublication
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscoveryc5f952f6-669f-4e3d-abc8-76d6ac56119b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
melle-hernandez.pdf
Size:
155.05 KB
Format:
Adobe Portable Document Format

Collections