Linear systems of rational curves on rational surfaces
| dc.contributor.author | Daigle, Daniel | |
| dc.contributor.author | Melle Hernández, Alejandro | |
| dc.date.accessioned | 2023-06-20T03:31:54Z | |
| dc.date.available | 2023-06-20T03:31:54Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | Given a curve C on a projective nonsingular rational surface S, over an algebraically closed eld of characteristic zero, we are interested in the set C of linear systems L on S satisfying C 2 L, dimL 1, and the general member of L is a rational curve. The main result of the paper gives a complete description of C and, in particular, characterizes the curves C for which C is non empty | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | NSERC Canada | |
| dc.description.sponsorship | MTM | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/20763 | |
| dc.identifier.issn | 1609-3321 | |
| dc.identifier.officialurl | http://www.ams.org/distribution/mmj/vol12-2-2012/daigle-melle-hernandez.pdf | |
| dc.identifier.relatedurl | http://www.mathjournals.org/mmj/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/43743 | |
| dc.issue.number | 2 | |
| dc.journal.title | Moscow Mathematical Journal | |
| dc.language.iso | eng | |
| dc.page.final | 268 | |
| dc.page.initial | 261 | |
| dc.publisher | Independent University of Moscow | |
| dc.relation.projectID | MTM2010-21740-C02-01 | |
| dc.relation.projectID | Grupo Singular CCG07-UCM/ESP-2695-921020 | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 512.772 | |
| dc.subject.keyword | rational curves | |
| dc.subject.keyword | rational surfaces | |
| dc.subject.keyword | linear systems | |
| dc.subject.keyword | weighted cluster of singular points | |
| dc.subject.ucm | Geometria algebraica | |
| dc.subject.unesco | 1201.01 Geometría Algebraica | |
| dc.title | Linear systems of rational curves on rational surfaces | |
| dc.type | journal article | |
| dc.volume.number | 12 | |
| dcterms.references | M. Alberich-Carrami˜nana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002. D. Daigle and A. Melle-Hern´andez, Linear systems associated to unicuspidal rational plane curves, in preparation. M. H. Gizatullin, Affine surfaces that can be augmented by a nonsingular rational curve., Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778–802 (Russian).English translation: Math. USSR-Izv., 4 1970, 787–810. Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam, 1974.Translated from Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4. M. Miyanishi, Curves on rational and unirational surfaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 60, Tata Institute of Fundamental Research, Bombay, 1978. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c5f952f6-669f-4e3d-abc8-76d6ac56119b | |
| relation.isAuthorOfPublication.latestForDiscovery | c5f952f6-669f-4e3d-abc8-76d6ac56119b |
Download
Original bundle
1 - 1 of 1

