Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Open 3-manifolds as 3-fold branched coverings.

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:47:55Z
dc.date.available2023-06-20T18:47:55Z
dc.date.issued2001
dc.description.abstractIt is announced that the Freudenthal compactification of an open, connected, oriented 3-manifold is a 3-fold branched covering of S 3 . The branching set is as nice as can be expected. Some applications are given.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22240
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.rac.es/ficheros/doc/00061.pdf
dc.identifier.relatedurlhttp://www.rac.es/0/0_1.php
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58648
dc.issue.number2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A: Matemáticas
dc.language.isoeng
dc.page.final280
dc.page.initial279
dc.publisherReal Academia Ciencias Exactas Físicas Y Naturales
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordFreudenthal compactification
dc.subject.keywordOpen 3-manifolds
dc.subject.keywordbranched coverings
dc.subject.keywordwild knot
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOpen 3-manifolds as 3-fold branched coverings.
dc.typejournal article
dc.volume.number95
dcterms.referencesBing, R. H. (1952). A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2) 56. 354–-362. Brown,E.M.,Tucker,T.W.(1974).On proper homotopy theory for noncompact 3-manifolds. Trans.Amer.Math. Soc. 188, 105–-126. Fox,R.H.(1957).Covering spaceswith singularities.Asymposium in honor of S. Lefschetz,PrincetonUniversity Press, Princeton, N.J., 243-–257. Fox, R. H.(1972). A note on branched cyclic covering of spheres. Rev. Mat. Hisp.-Amer.(4) 32, 158–-166. Freudenthal, H.(1945). Uber ¨ die Enden diskreter Raume ¨ und Gruppen. Comment. Math. Helv. 17, 1-–38. Hilden, H. M. (1974). Every closed orientable 3-manifold is a 2-fold branched covering space of S☎ . Bull. Amer. Math. Soc. 80, 1243-–1244. Hilden, H. M. (1976). Three-fold branched coverings of S☎ . Amer. J. Math. 98, no. 4, 989–-997. Hoste, J.(1957). Framed link diagrams of open 3- manifolds.InKNOTS '96 (Tokyo), World Sci. Publishing,River Edge, NJ, 515-–537. Kuperberg, G.(1996). A volume-preserving counterexample to the Seifert conjecture. Comment. Math. Helv. 71, no. 1, 70–-97. Moise, E.E.(1952). Afne structures in 3-manifolds. V.The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56, 96-–114. Moise,E.E.(1977).Geometric topology in dimensions 2 and 3.GraduateTextsinMathematics,Vol. 47.Springer-Verlag, New York. Montesinos, J. M. (1974). A representation of closed orientable 3-manifolds as 3-fold branched coverings of S☎ . Bull. Amer. Math. Soc. 80, 845–846. Montesinos, J. M. (1976). Three-manifolds as 3-fold branched covers of S☎ . Quart. J. Math. Oxford Ser. (2) 27, no. 105, 85–-94. Montgomery, D., Zippin, L.(1954). Examples of transformation groups. Proc. Amer. Math. Soc. 5, 460–-465. Smith, A. (1939). Transformations of nite period: II, Ann. of Math. (2) 40, 690-–711
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos61.pdf
Size:
91.02 KB
Format:
Adobe Portable Document Format

Collections