On the dynamics of a semilinear heat equation with strong absorption
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:10:12Z | |
dc.date.available | 2023-06-20T17:10:12Z | |
dc.date.issued | 1989 | |
dc.description.abstract | This paper deals with the following initial value problem: (1) ∂u/∂t−Δu+u p=0 on RN, N≥1, 0<p<1, u(x,0)=u0(x) in RN and u0 is nonnegative, continuous and such that (2) u0(x)≤Aeα|x|2 for some A>0 and α≥0. For any x∈RN, the extinction time of x is defined as follows: TE(x)=sup{t>0,u(x,t)>0}, u(x,t) being the solution of (1). The following results are established. (i) If u0(x)≤A(|x|)+B|x−a|2/(1−p) for some a∈RN where A(|x|)=o(|x| 2/(1−p)) as |x|→+∞ and 0≤B<[(1−p)2/2(N(1−p)+2p)]1/(1−p), then for any y∈RN there exists TE(y)<+∞ such that u(y,t)=0 for any t>TE(y). (ii) It is assumed that N=1. Let u(x,t) be the solution of (1). For a convenient behaviour of u0(x) as |x|→+∞, then u(x,t) tends to a limit as t→+∞, uniformly in compact sets on R. (iii) Let u0(r) be a nonnegative radial function satisfying (2). Then the solution of (1) with initial value u0(r) is radially symmetric and for a convenient behaviour of u0(r) as r→+∞, u(r,t) tends to a limit as r→+∞, uniformly on compact sets in R. For N≥2, the authors restrict themselves to the radial case. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/18129 | |
dc.identifier.doi | 10.1080/03605308908820672 | |
dc.identifier.issn | 0360-5302 | |
dc.identifier.officialurl | http://www.tandfonline.com/doi/abs/10.1080/03605308908820672 | |
dc.identifier.relatedurl | http://www.tandfonline.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57882 | |
dc.issue.number | 12 | |
dc.journal.title | Communications in Partial Differential Equations | |
dc.page.final | 1715 | |
dc.page.initial | 1653 | |
dc.publisher | Taylor & Francis | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Semilinear heat equation | |
dc.subject.keyword | Cauchy problem | |
dc.subject.keyword | dead cores | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | On the dynamics of a semilinear heat equation with strong absorption | |
dc.type | journal article | |
dc.volume.number | 14 | |
dspace.entity.type | Publication |