Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the dynamics of a semilinear heat equation with strong absorption

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:10:12Z
dc.date.available2023-06-20T17:10:12Z
dc.date.issued1989
dc.description.abstractThis paper deals with the following initial value problem: (1) ∂u/∂t−Δu+u p=0 on RN, N≥1, 0<p<1, u(x,0)=u0(x) in RN and u0 is nonnegative, continuous and such that (2) u0(x)≤Aeα|x|2 for some A>0 and α≥0. For any x∈RN, the extinction time of x is defined as follows: TE(x)=sup{t>0,u(x,t)>0}, u(x,t) being the solution of (1). The following results are established. (i) If u0(x)≤A(|x|)+B|x−a|2/(1−p) for some a∈RN where A(|x|)=o(|x| 2/(1−p)) as |x|→+∞ and 0≤B<[(1−p)2/2(N(1−p)+2p)]1/(1−p), then for any y∈RN there exists TE(y)<+∞ such that u(y,t)=0 for any t>TE(y). (ii) It is assumed that N=1. Let u(x,t) be the solution of (1). For a convenient behaviour of u0(x) as |x|→+∞, then u(x,t) tends to a limit as t→+∞, uniformly in compact sets on R. (iii) Let u0(r) be a nonnegative radial function satisfying (2). Then the solution of (1) with initial value u0(r) is radially symmetric and for a convenient behaviour of u0(r) as r→+∞, u(r,t) tends to a limit as r→+∞, uniformly on compact sets in R. For N≥2, the authors restrict themselves to the radial case.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18129
dc.identifier.doi10.1080/03605308908820672
dc.identifier.issn0360-5302
dc.identifier.officialurlhttp://www.tandfonline.com/doi/abs/10.1080/03605308908820672
dc.identifier.relatedurlhttp://www.tandfonline.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57882
dc.issue.number12
dc.journal.titleCommunications in Partial Differential Equations
dc.page.final1715
dc.page.initial1653
dc.publisherTaylor & Francis
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.cdu536.2
dc.subject.keywordSemilinear heat equation
dc.subject.keywordCauchy problem
dc.subject.keyworddead cores
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn the dynamics of a semilinear heat equation with strong absorption
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication

Download

Collections