Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

L-p[0,1] \ boolean OR(q > p) L-q[0,1] is spaceable for every p > 0

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

In this short note we prove the result stated in the title: that is, for every p > 0 there exists an infinite dimensional closed linear sub-space of L-p[0, 1] every nonzero element of which does not belong to boolean OR(q>p) L-q[0, 1]. This answers in the positive a question raised in 2010 by R.M. Aron on the spaceability of the above sets (for both, the Banach and quasi-Banach cases). We also complete some recent results from Botelho et al. (2011) [3] for subsets of sequence spaces. (C) 2012 Elsevier Inc. All rights reserved.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections