Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Epigenetic Signatures in Hypertension

dc.contributor.authorAlfonso Pérez, Gerardo
dc.contributor.authorDelgado Martínez, Víctor
dc.date.accessioned2024-04-24T12:42:18Z
dc.date.available2024-04-24T12:42:18Z
dc.date.issued2023-04-28
dc.description.abstractClear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future.
dc.description.departmentDepto. de Radiología, Rehabilitación y Fisioterapia
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAlfonso Perez, G.; Delgado Martinez, V. Epigenetic Signatures in Hypertension. J. Pers. Med. 2023, 13, 787. https://doi.org/10.3390/jpm13050787
dc.identifier.doi10.3390/jpm13050787
dc.identifier.officialurlhttps://www.mdpi.com/2075-4426/13/5/787
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103441
dc.issue.number5
dc.journal.titleJournal of Personalized Medicine
dc.language.isoeng
dc.page.initial787
dc.publisherMPDI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu616.12-008.331.1
dc.subject.keywordHypertensive
dc.subject.keywordPre-hypertensive
dc.subject.keywordMachine learning
dc.subject.ucmFisioterapia (Medicina)
dc.subject.unesco3204.04 Rehabilitación (Médica)
dc.titleEpigenetic Signatures in Hypertension
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublicationa9bf6666-2d24-4400-b9a0-18b18cd42948
relation.isAuthorOfPublication.latestForDiscoverya9bf6666-2d24-4400-b9a0-18b18cd42948

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jpm-13-00787-v2 (1).pdf
Size:
323.4 KB
Format:
Adobe Portable Document Format

Collections