Publication:
Efecto antibacteriano de nanopartículas poliméricas activas en un modelo in vitro de biopelícula subgingival sobre superficies de titanio

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Introducción y justificación: Las enfermedades periimplantarias son procesos inflamatorios asociados a la biopelícula periimplantaria en los tejidos que rodean al implante. Su tratamiento tiene dos fases diferenciadas, no quirúrgica y quirúrgica, pero no existen todavía tratamientos predecibles. Por ello, y para tratar facilitar la resolución de la periimplantitis, con regeneración ósea en los defectos periimplantarios, se ha desarrollado un nuevo tipo de nanopartículas (NPs). Objetivo: Analizar la capacidad antibacteriana de las nanopartículas poliméricas bioactivas (PolymP-n Active) cargadas con zinc, calcio y doxiciclina, en un modelo validado de biopelícula oral in vitro sobre discos de titanio sobrearenados y grabados con ácido (SLA). Material y métodos: Se utilizó un modelo de biopelícula oral subgingival in vitro de seis bacterias, formada sobre discos de titanio, en la que se aplicaron nanopartículas activas sin cargar y cargadas con doxiciclina, zinc y calcio, así como discos estériles a modo de controles. Todos los discos fueron incubados en condiciones de anaerobiosis, durante 24, 48 y 72 h. Se cuantificaron las bacterias presentes en las biopelículas formadas como unidades formadoras de colonias por mililitro (UFC/mL), mediante la técnica de la reacción en cadena de la polimerasa cuantitativa (qPCR). Para analizar el efecto de las diferentes nanopartículas sobre la principal variable dependiente (UFC/mL) y sobre la viabilidad bacteriana, se aplicó un modelo lineal generalizado con la corrección de Bonferroni. Resultados y conclusión: Las NPs sin cargar o cargadas con calcio, zinc y doxiciclina, produjeron una alteración sobre la cinética bacteriana en las biopelículas bacterianas desarrolladas sobre los discos de titanio. Específicamente, las NPs cargadas con doxiciclina redujeron la carga bacteriana de Veillonella parvula, Fusobacterium nucleatum, Streptococcus oralis y Actinomyces naeslundii de forma estadísticamente significativa (p<0,05).
Introduction and justification: Peri-implant diseases are inflammatory conditions associated with peri-implant biofilms in the tissues surrounding dental implants. Their treatment is divided in two steps, non-surgical and surgical. However, predictable treatments remain a challenge. Thus, in order to facilitate the resolution of peri-implantitis, with bone regeneration of the peri-implant defect, a new type of nanoparticles (NPs) has been developed. Aim: To evaluate the antibacterial capacity of PolymP-n Active NPs, charged with zinc, calcium, and doxycycline, in a validated in vitro oral biofilm model, oversandblasted and acid-etched (SLA) titanium discs. Material and methods: A validated in vitro subgingival oral biofilm model, with six bacterial species, was used. Biofilms were formed on titanium discs to which active NPs were applied without charge or loaded with doxycycline, zinc and calcium. Sterile discs were used as controls. All discs were incubated under anaerobic conditions for 24, 48 and 72 hours. Bacteria present in the formed biofilms bacteria were quantified by means of quantitative polymerase chain reaction (qPCR), and expressed as colony forming units per millilitre (CFU/mL). To statistically evaluate the effect of the different NPs on the primary dependent outcome variable (CFU/mL) and on bacterial viability, generalized linear models and Bonferroni corrections were applied. Results and conclusion: NPs without charge, or charged with calcium, zinc and doxycycline, produced an alteration in the bacterial kinetics on the bacterial biofilms developed on the titanium discs. Specifically, NPs loaded with doxycycline reduce the bacterial load of Veillonella parvula, Fusobacterium nucleatum, Streptococcus oralis and Actinomyces naeslundii (p<0.05).
Description
Trabajo Fin de Master encuadrado en la línea de investigación de las enfermedades periodontales.
Keywords
Citation
Abdulkareem, E. H., Memarzadeh, K., Allaker, R. P., Huang, J., Pratten, J., y Spratt, D. (2015). Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. Journal of Dentistry, 43(12), 1462-1469. doi:10.1016/j.jdent.2015.10.010 Ajay Bhardwaj, V., Deepika, P., y Basavarajaiah, S. (2018). Zinc incorporated nano hydroxyapatite: A novel bone graft used for regeneration of intrabony defects. International Journal of Molecular and Cellular Medicine, 9(3), 427-33. doi:10.4103/ccd.ccd_192_18 Albrektsson, y Isidor. (1994). ‘Consensus Report Session IV. Proceedings Od the First European Workshop on Periodontology’. Quintessence Publishing, 365-69. Albrektsson, T., y Wennerberg, A. (2004). Oral Implant Surfaces: Part 1--review Focusing on Topographic and Chemical Properties of Different Surfaces and in Vivo Responses to Them. The International Journal of Prosthodontics, 17(5), 536-43. Aupee, O., Almeras, D., Le Garlantezec, P., y Bohand, X. (2009). [Doxycycline]. Medecine tropicale : revue du Corps de sante colonial, 69(6), 556-8. d e Avila, E. D., Oirschot, B. A., y van den Beucken, J. J. J. P. (2020). Biomaterial‐based possibilities for managing peri‐implantitis. Journal of Periodontal Research, 55(2), 165-173. doi:10.1111/jre.12707 Bartold, P. M., Gronthos, S., Ivanovski, S., Fisher, A., y Hutmacher, D. W. (2016). Tissue engineered periodontal products. Journal of Periodontal Research, 51(1), 1-15. doi:10.1111/jre.12275 Berglundh, T., Armitage, G., Araujo, M. G., Avila-Ortiz, G., Blanco, J., Camargo, P. M., Chen, S., et al. (2018). Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Clinical Periodontology, 45, S286S291. doi:10.1111/jcpe.12957 Berglundh, T., Jepsen, S., Stadlinger, B., y Terheyden, H. (2019). Peri-implantitis and its prevention. Clinical Oral Implants Research, 30(2), 150-155. doi:10.1111/clr.13401 Botelho, M. A., Martins, J. G., Ruela, R. S., Queiroz, D. B., y Ruela, W. S. (2010). Nanotechnology in ligature-induced periodontitis: protective effect of a doxycycline gel with nanoparticules. Journal of Applied Oral Science, 18(4), 335-342. doi:10.1590/S1678-77572010000400003 Caton, J. G., Armitage, G., Berglundh, T., Chapple, I. L. C., Jepsen, S., Kornman, K. S., Mealey, B. L., et al. (2018). A new classification scheme for periodontal and periimplant diseases and conditions - Introduction and key changes from the 1999 classification. Journal of Clinical Periodontology, 45, S1-S8. doi:10.1111/jcpe.12935 Chaturvedi, R., Gill, A. S., y Sikri, P. (2008). Evaluation of the regenerative potential of 25% doxycycline-loaded biodegradable membrane vs biodegradable membrane alone in the treatment of human periodontal infrabony defects: a clinical and radiological study. Indian Journal of Dental Research, 19(2), 116-123. doi:10.4103/09709290.40465 Corcuera, M. T., Gómez-Lus, M. L., Gómez-Aguado, F., Maestre, J. R., Ramos, M. del C., Alonso, M. J., y Prieto, J. (2013). Morphological plasticity of Streptococcus oralis isolates for biofilm production, invasiveness, and architectural patterns. Archives of Oral Biology, 58(11), 1584-1593. doi:10.1016/j.archoralbio.2013.07.011 Daubert, D. M., y Weinstein, B. F. (2019). Biofilm as a risk factor in implant treatment. (G. E. Romanos, Ed.)Periodontology 2000, 81(1), 29-40. doi:10.1111/prd.12280 Dige, I., Raarup, M. K., Nyengaard, J. R., Kilian, M., y Nyvad, B. (2009). Actinomyces naeslundii in initial dental biofilm formation. Microbiology, 155(7), 2116-2126. doi:10.1099/mic.0.027706-0 Elemek, E., y Khalid, A. (2014). Peri-implantitis: Etiology, Diagnosis and Treatment: An Update. The New York state dental journal, 80, 26-32. Ferreira, S. D., Martins, C. C., Amaral, S. A., Vieira, T. R., Albuquerque, B. N., Cota, L. O. M., Esteves Lima, R. P., et al. (2018). Periodontitis as a risk factor for periimplantitis: Systematic review and meta-analysis of observational studies. Journal of Dentistry, 79, 1-10. doi:10.1016/j.jdent.2018.09.010 Figuero, E., Graziani, F., Sanz, I., Herrera, D., y Sanz, M. (2014). Management of periimplant mucositis and peri-implantitis. Periodontology 2000, 66(1), 255-273. doi:10.1111/prd.12049 Flor Chábez, M. C., y Campos Mancero, O. V. (2017). Suscetibilidade aos antibióticos de Aggregatibacter actinomycetemcomitans por difusão e teste de diluição. Dominio de las ciencias, 2477-8818, 3(2), 348-74. doi:http://dx.doi.org/10.23857/dom.cien.pocaip.2017.3.2.348-3748 URL:http://dominiodelasciencias.com/ojs/index.php/es/index Fröjd, V., Chávez de Paz, L., Andersson, M., Wennerberg, A., Davies, J. R., y Svensäter, G. (2011). In situ analysis of multispecies biofilm formation on customized titanium surfaces: Biofilms on titanium surfaces. Molecular Oral Microbiology, 26(4), 241252. doi:10.1111/j.2041-1014.2011.00610.x Fürst, M. M., Salvi, G. E., Lang, N. P., y Persson, G. R. (2007). Bacterial colonization immediately after installation on oral titanium implants. Clinical Oral Implants Research, 18(4), 501-508. doi:10.1111/j.1600-0501.2007.01381.x G Gerits, E., Verstraeten, N., y Michiels, J. (2017). New approaches to combat Porphyromonas gingivalis biofilms. Journal of Oral Microbiology, 9(1), 1300366. doi:10.1080/20002297.2017.1300366 Gholizadeh, P., Pormohammad, A., Eslami, H., Shokouhi, B., Fakhrzadeh, V., y Kafil, H. S. (2017). Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microbial Pathogenesis, 113, 303-311. doi:10.1016/j.micpath.2017.11.001 Gomes, K. do N., Alves, A. P. N. N., Dutra, P. G. P., y Viana, G. S. de B. (2017). Doxycycline induces bone repair and changes in Wnt signalling. International Journal of Oral Science, 9(3), 158-166. doi:10.1038/ijos.2017.28 Gronow, S., Welnitz, S., Lapidus, A., Nolan, M., Ivanova, N., Glavina Del Rio, T., Copeland, A., et al. (2010). Complete genome sequence of Veillonella parvula type strain (Te3T). Standards in Genomic Sciences, 2(1), 57-65. doi:10.4056/sigs.521107 Guilarte, C., y Perrone, M. (2005). Bacterias Periodontopatógenas: Bacilos Anaerobios gran negativos como agentes Etiológicos de la Enfermedad Periodontal. Acta Odontológica Venezolana, 43(2), 198-204. Hajishengallis, G., y Lamont, R. J. (2012). Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular Oral Microbiology, 27(6), 409-419. doi:10.1111/j.20411014.2012.00663.x Han, Y. W. (2015). Fusobacterium nucleatum: a commensal-turned pathogen. Current Opinion in Microbiology, 23, 141-147. doi:10.1016/j.mib.2014.11.013 Harvey, J. D. (2017). Periodontal Microbiology. Dental Clinics of North America, 61(2), 253-269. doi:10.1016/j.cden.2016.11.005 Heitz-Mayfield, L. J. A., y Salvi, G. E. (2018). Peri-implant mucositis. Journal of Periodontology, 89, S257-S266. doi:10.1002/JPER.16-0488 Heitz-Mayfield, L. J. A., Salvi, G. E., Botticelli, D., Mombelli, A., Faddy, M., Lang, N. P., y On Behalf of the Implant Complication Research Group (ICRG). (2011). Antiinfective treatment of peri-implant mucositis: a randomised controlled clinical trial: Treatment of peri-implant mucositis. Clinical Oral Implants Research, 22(3), 237241. doi:10.1111/j.1600-0501.2010.02078.x Ingendoh‐Tsakmakidis, A., Mikolai, C., Winkel, A., Szafrański, S. P., Falk, C. S., Rossi, A., Walles, H., et al. (2019). Commensal and pathogenic biofilms differently modulate peri‐implant oral mucosa in an organotypic model. Cellular Microbiology, 21(10). doi:10.1111/cmi.13078 Jepsen, S., Berglundh, T., Genco, R., Aass, A. M., Demirel, K., Derks, J., Figuero, E., et al. (2015). Primary prevention of peri-implantitis: Managing peri-implant mucositis. Journal of Clinical Periodontology, 42, S152-S157. doi:10.1111/jcpe.12369 Kara, D., Luppens, S. B. I., y Cate, J. M. (2006). Differences between single- and dualspecies biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. European Journal of Oral Sciences, 114(1), 58-63. doi:10.1111/j.1600-0722.2006.00262.x Kumar, P. S. (2019). Systemic Risk Factors for the Development of Periimplant Diseases: Implant Dentistry, 28(2), 115-119. doi:10.1097/ID.0000000000000873 Lafaurie, G. I., Sabogal, M. A., Castillo, D. M., Rincón, M. V., Gómez, L. A., Lesmes, Y. A., y Chambrone, L. (2017). Microbiome and Microbial Biofilm Profiles of PeriImplantitis: A Systematic Review. Journal of Periodontology, 88(10), 1066-1089. doi:10.1902/jop.2017.170123 Lang, N. P., Berglundh, T., y on Behalf of Working Group 4 of the Seventh European Workshop on Periodontology. (2011). Periimplant diseases: where are we now? - Consensus of the Seventh European Workshop on Periodontology: Periimplant diseases: where are we now? Journal of Clinical Periodontology, 38, 178-181. doi:10.1111/j.1600-051X.2010.01674.x Lang, N. P., y Jepsen, S. (2009). Implant surfaces and design (Working Group 4). Clinical Oral Implants Research, 20, 228-231. doi:10.1111/j.1600-0501.2009.01771.x Lindhe, J., Meyle, J., y on behalf of Group D of the European Workshop on Periodontology. (2008). Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. Journal of Clinical Periodontology, 35, 282-285. doi:10.1111/j.1600051X.2008.01283.x Liu, J., Merritt, J., y Qi, F. (2011). Genetic transformation of Veillonella parvula: Veillonellae transformation. FEMS Microbiology Letters, 322(2), 138-144. doi:10.1111/j.1574-6968.2011.02344.x López-Olmos, J., Gasull, J., y Vivar, B. (2010). Actinomyces e infecciones mixtas en la citología cervicovaginal, en portadoras de DIU. Clínica e Investigación en Ginecología y Obstetricia, 37(4), 134-140. doi:10.1016/j.gine.2009.05.004 Mahajania, M., Laddha, R., Shelke, A., Gadhiya, N., Narkhede, S., y Shetty, G. P. (2018). Effect of Subgingival Doxycycline Placement on Clinical and Microbiological Parameters in Inflammatory Periodontal Disease: Both in Vivo and in Vitro Studies. The journal of contemporary dental practice, 19(10), 1228-34. Mahmoud, M. M., y Samy, W. M. (2016). Enhanced Periodontal Regeneration by Novel Single Application Sustained Release Nano-Structured Doxycycline Films. Current Drug Delivery, 13(6), 899-908. doi:10.2174/1567201813666151113122752 Matesanz-Pérez, P., García-Gargallo, M., Figuero, E., Bascones-Martínez, A., Sanz, M., y Herrera, D. (2013). A systematic review on the effects of local antimicrobials as adjuncts to subgingival debridement, compared with subgingival debridement alone, in the treatment of chronic periodontitis. Journal of Clinical Periodontology, 40(3), 227-241. doi:10.1111/jcpe.12026 Millan, C., Vivanco, J. F., Benjumeda-Wijnhoven, I. M., Bjelica, S., y Santibanez, J. F. (2018). Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. En K. Turksen (Ed.), Cell Biology and Translational Medicine, Volume 3, Advances in Experimental Medicine and Biology (Vol. 1107, pp 91-112). Cham: Springer International Publishing. doi:10.1007/5584_2018_249 Mombelli, A., y Décaillet, F. (2011). The characteristics of biofilms in peri-implant disease: Biofilms in peri-implant disease. Journal of Clinical Periodontology, 38, 203-213. doi:10.1111/j.1600-051X.2010.01666.x Mombelli, A., Müller, N., y Cionca, N. (2012). The epidemiology of peri-implantitis. Clinical Oral Implants Research, 23, 67-76. doi:10.1111/j.1600-0501.2012.02541.x Moura, L. A., Oliveira Giorgetti Bossolan, A. P., Aparecida de Rezende Duek, E., Antonio Sallum, E., Humberto Nociti Jr, F., Zaffalon Casati, M., y Wilson Sallum, A. (2012). Treatment of peri-implantitis using nonsurgical debridement with bioresorbable nanospheres for controlled release of doxycycline: case report. Compendium of continuing education in dentistry (Jamesburg, N.J. : 1995), 33(10), E145-149. Mysak, J., Podzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., Prochazkova, J., et al. (2014). Porphyromonas gingivalis : Major Periodontopathic Pathogen Overview. Journal of Immunology Research, 2014, 1-8. doi:10.1155/2014/476068 Navarro-Requena, C., Pérez-Amodio, S., Castaño, O., y Engel, E. (2018). Wound healingpromoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology, 29(39), 395102. doi:10.1088/1361-6528/aad01f de Oliveira, R. V. D., Bonafé, F. S. S., Spolidorio, D. M. P., Koga-Ito, C. Y., de Farias, A. L., Kirker, K. R., James, G. A., et al. (2020). Streptococcus mutans and Actinomyces naeslundii Interaction in Dual-Species Biofilm. Microorganisms, 8(2), 194. doi:10.3390/microorganisms8020194 Orbak, R., Kara, C., Özbek, E., Tezel, A., y Demir, T. (2007). Effects of zinc deficiency on oral and periodontal diseases in rats. Journal of Periodontal Research, 42(2), 138143. doi:10.1111/j.1600-0765.2006.00939.x Ortega, S., Vasek, O., y Sin, C. (2011). Aggregatibacter (Actinobacillus) Actinomycetemcomitans y Enfermedad Periodontal. Revista de la Facultad de Odontología, 4(1), 29. doi:10.30972/rfo.41982 Osorio, R., Alfonso-Rodríguez, C. A., Medina-Castillo, A. L., Alaminos, M., y Toledano, M. (2016). Bioactive Polymeric Nanoparticles for Periodontal Therapy. (Y. K. Mishra, Ed.)PLOS ONE, 11(11), e0166217. doi:10.1371/journal.pone.0166217 Osorio, R., Alfonso-Rodríguez, C. A., Osorio, E., Medina-Castillo, A. L., Alaminos, M., Toledano-Osorio, M., y Toledano, M. (2017). Novel potential scaffold for periodontal tissue engineering. Clinical Oral Investigations, 21(9), 2695-2707. doi:10.1007/s00784-017-2072-8 Padovani, G. C., Feitosa, V. P., Sauro, S., Tay, F. R., Durán, G., Paula, A. J., y Durán, N. (2015). Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends in Biotechnology, 33(11), 621-636. doi:10.1016/j.tibtech.2015.09.005 Poleník, P. (1993). Zinc in etiology of periodontal disease. Medical Hypotheses, 40(3), 182185. doi:10.1016/0306-9877(93)90208-8 Renvert, S., y Polyzois, I. (2018). Treatment of pathologic peri-implant pockets. Periodontology 2000, 76(1), 180-190. doi:10.1111/prd.12149 Renvert, S., Roos-Jansåker, A.-M., y Claffey, N. (2008). Non-surgical treatment of periimplant mucositis and peri-implantitis: a literature review. Journal of Clinical Periodontology, 35, 305-315. doi:10.1111/j.1600-051X.2008.01276.x Roccuzzo, M., De Angelis, N., Bonino, L., y Aglietta, M. (2010). Ten-year results of a threearm prospective cohort study on implants in periodontally compromised patients. Part 1: implant loss and radiographic bone loss. Clinical Oral Implants Research, 21(5), 490-496. doi:10.1111/j.1600-0501.2009.01886.x Rodrigo, D., Sanz‐Sánchez, I., Figuero, E., Llodrá, J. C., Bravo, M., Caffesse, R. G., Vallcorba, N., et al. (2018). Prevalence and risk indicators of peri‐implant diseases in Spain. Journal of Clinical Periodontology, 45(12), 1510-1520. doi:10.1111/jcpe.13017 Sahrmann, P., Gilli, F., Wiedemeier, D. B., Attin, T., Schmidlin, P. R., y Karygianni, L. (2020). The Microbiome of Peri-Implantitis: A Systematic Review and MetaAnalysis. Microorganisms, 8(5), 661. doi:10.3390/microorganisms8050661 Salvi, G. E., Cosgarea, R., y Sculean, A. (2019). Prevalence of Periimplant Diseases: Implant Dentistry, 28(2), 100-102. doi:10.1097/ID.0000000000000872 Sanai, Y., Persson, G. R., Starr, J. R., Luis, H. S., Bernardo, M., Leitao, J., y Roberts, M. C. (2002). Presence and antibiotic resistance of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens in children. Journal of Clinical Periodontology, 29(10), 929-934. doi:10.1034/j.1600-051X.2002.291008.x Sánchez, M. C., Llama-Palacios, A., Blanc, V., León, R., Herrera, D., y Sanz, M. (2011). Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota: An in vitro subgingival biofilm model. Journal of Periodontal Research, 46(2), 252-260. doi:10.1111/j.16000765.2010.01341.x Sánchez, M. C., Llama-Palacios, A., Fernández, E., Figuero, E., Marín, M. J., León, R., Blanc, V., et al. (2014). An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dental Materials, 30(10), 1161-1171. doi:10.1016/j.dental.2014.07.008 Sánchez, M. C., Toledano-Osorio, M., Bueno, J., Figuero, E., Toledano, M., Medina-Castillo, A. L., Osorio, R., et al. (2019). Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dental Materials, 35(1), 156-168. doi:10.1016/j.dental.2018.11.015 Schwarz, F., Derks, J., Monje, A., y Wang, H.-L. (2018). Peri-implantitis. Journal of Clinical Periodontology, 45, S246-S266. doi:10.1111/jcpe.12954 Schwarz, F., Herten, M., Sager, M., Wieland, M., Dard, M., y Becker, J. (2007). Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA � titanium implants: preliminary results of a pilot study in dogs. Clinical Oral Implants Research, 18(4), 481-488. doi:10.1111/j.1600-0501.2007.01341.x Seyedmajidi, S. A., Seyedmajidi, M., Moghadamnia, A., Khani, Z., Zahedpasha, S., Jenabian, N., Jorsaraei, G., et al. (2014). Effect of Zinc-Deficient Diet on Oral Tissues and Periodontal Indices in Rats. International journal of molecular and cellular medicine, 3(2), 81-7. Shue, L., Yufeng, Z., y Mony, U. (2012). Biomaterials for periodontal regeneration: A review of ceramics and polymers. Biomatter, 2(4), 271-277. doi:10.4161/biom.22948 Socransky, S. S., y Haffajee, A. D. (2005). Periodontal microbial ecology. Periodontology 2000, 38(1), 135-187. doi:10.1111/j.1600-0757.2005.00107.x Sueldo. (1998). La superficie SLA straumann del implante ITI. Odontología Sanmarquina, 1(2). Thurnheer, T., y Belibasakis, G. N. (2018). Streptococcus oralis maintains homeostasis in oral biofilms by antagonizing the cariogenic pathogen Streptococcus mutans. Molecular Oral Microbiology, 33(3), 234-239. doi:10.1111/omi.12216 Toledano-Osorio, M., Babu, J., Osorio, R., Medina-Castillo, A., García-Godoy, F., y Toledano, M. (2018). Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria. Materials, 11(6), 1013. doi:10.3390/ma11061013 Vargas-Reus, M. A., Memarzadeh, K., Huang, J., Ren, G. G., y Allaker, R. P. (2012). Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. International Journal of Antimicrobial Agents, 40(2), 135-139. doi:10.1016/j.ijantimicag.2012.04.012 van Velzen, F. J. J., Ofec, R., Schulten, E. A. J. M., y ten Bruggenkate, C. M. (2015). 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clinical Oral Implants Research, 26(10), 1121-1128. doi:10.1111/clr.12499 Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., Feroze, A. H., et al. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1253-1263. doi:10.1016/j.nano.2015.02.013 Wang, J., Du, L., Fu, Y., Jiang, P., y Wang, X. (2019). ZnO nanoparticles inhibit the activity of Porphyromonas gingivalis and Actinomyces naeslundii and promote the mineralization of the cementum. BMC Oral Health, 19(1), 84. doi:10.1186/s12903019-0780-y van Winkelhoff, A. J. (2012). Antibiotics in the Treatment of Peri-Implantitis. European Journal of Oral Implantology, 5 Suppl, S43-50. Zhang, P., Ding, L., y Kasugai, S. (2019). Effect of doxycycline doped bone substitute on vertical bone augmentation on rat calvaria. Dental Materials Journal, 38(2), 211-217. doi:10.4012/dmj.2017-434 Zhang, Y., Wang, X., Li, H., Ni, C., Du, Z., y Yan, F. (2018). Human oral microbiota and its modulation for oral health. Biomedicine & Pharmacotherapy, 99, 883-893. doi:10.1016/j.biopha.2018.01.146