Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelos integrables bidimensionales con condiciones de contorno abiertas e invariancia bajo grupos cuánticos

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Defense date

10/06/1994

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En la memoria de tesis doctoral se hace un estudio sobre modelos de vértices y cadenas de espín bidimensionales exactamente integrables y con condiciones de contorno abiertas. Se encuentran soluciones de las ecuaciones de reflexion para diferentes modelos. En algunos casos estas soluciones son las mas generales. Posteriormente se relacionan las cadenas invariantes grupo cuantico con las trazas de markov. Se obtienen las cadenas invariantes suq(n) y chq(2) y los generadores del grupo cuantico en el limite del parametro espectral. Se generaliza el ansatz de bethe encajado y se resuelve el problema de autovalores de la cadena invariante suq(n). También se hace un estudio de las correcciones de tamaño finito. Se resuelve posteriormente el modelo t-j de superconductividad con condiciones abiertas. Lo mismo se hace con las cadenas asociadas a las algebras tipo an-1 con condiciones de contorno abiertas. Por ultimo se demuestra la propiedad de peso máximo para la cadena invariante suq(n) y el modelo t-j con invariacia splq(2,1). En las conclusiones se comenta la posible aplicación de los resultados obtenidos al problema de hofstadter y otros relacionados con condiciones abiertas.

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Teórica II (Métodos Matemáticos de la Física), leída el 10-06-1994

Unesco subjects

Keywords

Collections