On superstable expansions of free Abelian Groups

dc.contributor.authorSklinos, Rizos
dc.contributor.authorPalacín Cruz, Daniel
dc.date.accessioned2024-02-03T14:39:01Z
dc.date.available2024-02-03T14:39:01Z
dc.date.issued2018-01-29
dc.description.abstractWe prove that (Z,+,0) has no proper superstable expansions of finite Lascar rank. Nevertheless, this structure equipped with a predicate defining powers of a given natural number is superstable of Lascar rank ω. Additionally, our methods yield other superstable expansions such as (Z,+,0) equipped with the set of factorial elements.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPalacín, D.; Sklinos, R. On Superstable Expansions of Free Abelian Groups. Notre Dame Journal of Formal Logic 2018, 59(2). doi:10.1215/00294527-2017-0023.
dc.identifier.doi10.1215/00294527-2017-0023
dc.identifier.issn0029-4527
dc.identifier.officialurlhttps//doi.org/10.1215/00294527-2017-0023
dc.identifier.urihttps://hdl.handle.net/20.500.14352/98556
dc.issue.number2
dc.journal.titleNotre Dame Journal of Formal Logic
dc.language.isoeng
dc.page.final169
dc.page.initial157
dc.publisherUniversity of Notre Dame
dc.rights.accessRightsopen access
dc.subject.keywordFree Abelian groups
dc.subject.keywordSuperstability
dc.subject.keywordModel theory
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.10 Teoría de Modelos
dc.titleOn superstable expansions of free Abelian Groupsen
dc.typejournal article
dc.volume.number59
dspace.entity.typePublication
relation.isAuthorOfPublicationf173a7c4-2532-4caf-8464-59f9fd9483c6
relation.isAuthorOfPublication.latestForDiscoveryf173a7c4-2532-4caf-8464-59f9fd9483c6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ExpansionsIntegersFinal4a.pdf
Size:
323.93 KB
Format:
Adobe Portable Document Format

Collections