Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An electron-hole transport model for the analysis of the photorefractive harmonic gratings

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorVaveliuk, Pablo
dc.contributor.authorTorchia, Gustavo Adrián
dc.contributor.authorRuiz, B.
dc.contributor.authorBolognini, Néstor Alberto
dc.date.accessioned2023-06-20T18:58:19Z
dc.date.available2023-06-20T18:58:19Z
dc.date.issued2001-08
dc.description© 2001 IEEE. The work of P. Vaveliuk and G. A. Torchia was supported by a CONICET fellowship. This work was supported by the Agencia Nacional de Promoción Científica Y Tecnológica (ANPCYT) under Grant PMT-PICT0041.
dc.description.abstractThe steady-state exact solution for the higher harmonic gratings that synthesize the space-charge field is derived without restrictions within an electron-hole transport model which allows the behavior of these harmonic gratings to be determined rigorously in terms of the main photorefractive parameters. The model predicts the independence of the fundamental and harmonic amplitudes on the average excitation intensity. With respect to the modulation depth rn, the dependence of each v-harmonic order is established as m(v) which is the result obtained in the single-level model. In terms of the grating spacing, three regions of quite different behavior are identified as the linear, transition, and nonlinear regions. The extent of each region in terms of A strongly depends on the acceptor density relative to the donor density. If the acceptor density is much greater or smaller than the donor density, the linear region spreads out toward the lowest spacing, the nonlinear region extends toward the highest spacing, and the intermediate region is located in-between, as in the Kukhtarev model. But, for similar concentrations, the nonlinear region is shifted toward smaller spacing with respect to the linear region. On the other hand, the electron-hole competition can be deleterious for recording the grating, due to the charge compensation produced by the additional charge carrier that screens the internal space-charge field. Also, the relative importance of the higher harmonics is apparent for the smallest values of the external field as in the single-level model.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
dc.description.sponsorshipAgencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25264
dc.identifier.doi10.1109/3.937393
dc.identifier.issn0018-9197
dc.identifier.officialurlhttp://dx.doi.org/10.1109/3.937393
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59023
dc.issue.number8
dc.journal.titleIEEE Journal of Quantum Electronics
dc.language.isoeng
dc.page.final1049
dc.page.initial1040
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc.
dc.relation.projectIDPMT-PICT0041
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSpace-Charge Field
dc.subject.keywordBarium-Titanate
dc.subject.keywordShallow Traps
dc.subject.keywordModulation Depths
dc.subject.keywordSpatial Harmonics
dc.subject.keywordMovable Carriers
dc.subject.keywordLaser-Pulses
dc.subject.keywordDark Decay
dc.subject.keywordCrystals
dc.subject.keywordBi_12sio_20
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAn electron-hole transport model for the analysis of the photorefractive harmonic gratings
dc.typejournal article
dc.volume.number37
dcterms.references1. J. V. Alvarez-Bravo, M. Carrascosa, and L. Arizmendi, "Experimental effects of light intensity modulation om the reading and erasure of holographic gratings in BSO crystals", Opt. Commun., vol. 103, pp.22 -28 1993 2. G. A. Alphonse, R. C. Alig, D. L. Staebler, and W. Phillips, "Time dependent characteristics of photoinduced space-charge field and phase holograms in lithium niobate and other photorefractive media", RCA Rev., vol. 36, pp.213 -229 1975 3. D. A. Temple and C. Warde, "High-order anisotropic diffraction in photorefractive crystals", J. Opt. Soc. Amer. B, vol. 5, pp.1800 -1805 1988 4. Y. H. Lee and R. W. Hellwarth, "Spatial harmonics of photorefractive in barium titanate crystals", J. Appl. Phys., vol. 71, pp.916 -923 1992 5. J. E. Millerd, E. M. Garmire, M. B. Klein, B. A. Wechsler, F. P. Strohkendl, and G. A. Brost, "Photorefractive response at high modulation depths in Bi_12SiO_20 ", J. Opt. Soc. Amer. B, vol. 9, pp.1449 -1453 1992 6. J. P. Huignard and B. Ledu, "Collinear Bragg diffraction in photorefractive Bi_12SiO _20", Opt. Lett., vol. 7, pp.310 -312 1982 7. F. Vachss and L. Hesselink, "Selective enhancement of spatial harmonics of photorefractive gratings", J. Opt. Soc. Amer. B, vol. 5, pp.1814 -1821 1988 8. E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, "Steady-state photorefractive gratings in LiNbO _3 for strong light modulation depths", IEEE J. Quantum Electron., vol. Q-30, pp.875 -880 1994 9. P. Vaveliuk, B. Ruiz, and N. Bolognini, "Analysis of the steady-state photorefractive harmonic gratings", Phys. Rev. B, vol. 59, pp.10&thinsp,985 -10&thinsp,991 1999 10. D. Mahgerefteh and J. Feinberg, "Explanation of the apparent sublinear conductivity in photorefractive barium titanate", Phys. Rev. Lett., vol. 64, pp.2195 -2198 1990 11. Biaggio, M. Zgonik, and P. Gunter, "Build-up and dark decay of transient photorefractive gratings in reduced KNbO_3", Opt. Commun., vol. 77, pp.312 -316 1990 12. G. Pauliat and G. Roosen, "Photorefractive effect generated in sillenite crystals by picosecond pulses and comparison with the quasicontinuous regime", J. Opt. Soc. Amer. B, vol. 7, pp.2259 -2267 1990 13. P. Tayebati, "The effect of shallow trap on the dark storage of photorefractive grating in Bi_12SiO _20", J. Appl. Phys., vol. 70, pp.4082 -4094 1991 14. P. Nouchi, J. P. Partanen, and R. W. Hellwarth, "Simple transient solutions for photoconduction and the space-charge field in a photorefractive material with shallow traps", Phys. Rev. B, vol. 47, pp.15&thinsp,581 -15&thinsp,587 1993 15. J. Li, X. H. Li, F. Y. Lu, H. F. Wang, S. Z. Yuan, Y. Zhu, and X. Wu, "Erasure of photorefractive gratings in barium titanate", J. Appl. Phys., vol. 76, pp.7541 -7544 1994 16. G. Le Saux and A. Brun, "Photorefractive material response to short pulse ilumination", IEEE J. Quantum Electron., vol. Q-23, pp.1680 -1688 1987 17. P. Tayebati and D. Mahgerefteh, "Theory of the photorefractive effect for Bi_12SiO _20 and BaTiO_3 with shallow traps", J. Opt. Soc. Amer. B, vol. 8, pp.1053 -1064 1991 18. P. Vaveliuk, B. Ruiz, N. Bolognini, G. A. Torchia, and J. Fernandez, "Steady-state photorefractive harmonic gratings within the shallow-trap model", J. Optics A, 19. N. Barry and M. J. Damzen, "Two beams coupling and response-time measurements in barium titanate using high intensity", J. Opt. Soc. Amer. B, vol. 9, pp.1488 -1492 1992 20. M. J. Damzen and N. Barry, "Intensity-dependent hole-electron competition and photocarrier saturation in BaTiO _3 when using intense laser pulses", J. Opt. Soc. Amer. B, vol. 10, pp.600 -606 1993 21. C. Medrano and P. Gunter, F. Agullo-Lopez, Insulating Materials for Optoelectronics, 1995 :World Scientific 22. P. Vaveliuk, B. Ruiz, R. Duchowicz, and N. Bolognini, "Theoretical analysis of the photocurrent dark decay in photorefractive media", IEEE J. Quantum Electron., vol. 36, pp.692 -697 2000 23. L. Boutsikaris and F. Davidson, "Perturbative analysis of higher-order photorefractive gratings in InP:Fe", Opt. Commun., vol. 105, pp.411 -420 1994 24. L. Boutsikaris, S. Mailis, and N. A. Vainos, "Determination of the photorefractive parameter of Bi_12SiO _20 by study of the dynamic behavior of complementary gratings", J. Opt. Soc. Amer. B, vol. 15, pp.1042 -1051 1998 25. Shumelyuk, S. Odoulov, and G. Brost, "Nearly degenerate two-beam coupling in photorefractive crystals with two species of movable carriers", J. Opt. Soc. Amer. B, vol. 15, pp.2125 -2131 1998. 26. Shumelyuk, S. Odoulov, and G. Brost, "Multiline coherent oscillation in photorefractive crystals with two species of movable carriers", Appl. Phys. B, vol. 68, pp.959 -966 1999 27. G. C. Valley, "Simultaneous electron/hole transport in photorefractive materials", J. Appl. Phys., vol. 59, pp.3363 -3366 1986 28. P. Vaveliuk, B. Ruiz, N. Bolognini, and J. Fernandez, "Transient behavior of the photorefractive space-charge field", Phys. Rev. B, vol. 62, pp.4511 -4518 2000 29. L. M. Bernardo, J. C. Lopes, and O. D. S. Soares, "Hole-electron competition with fast and slow gratings in Bi_12SiO _20 crystals", Appl. Opt., vol. 29, pp.12 -14 1990 30. S. Zhivkova and M. Miteva, "Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers", J. Appl. Phys., vol. 68, pp.3099 -3102 1990
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos28.pdf
Size:
294.34 KB
Format:
Adobe Portable Document Format

Collections