Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Entropy production in the early-cosmology pionic phase

dc.contributor.authorDobado González, Antonio
dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorRodríguez Fernández, David
dc.date.accessioned2023-06-17T23:54:05Z
dc.date.available2023-06-17T23:54:05Z
dc.date.issued2016-07-30
dc.description© World scientific publ co pte LTD. We thank Antonio Maroto for a critical reading of the cosmology aspects of the work. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, and by grants UCM:910309, MINECO:FPA2011-27853-C02-01, MINECO:FPA2014- 53375-C2-1-P and CPAN Consolider-Ingenio 2010. DRF was partially supported by a GRUPIN 14-108 research grant from Principado de Asturias.
dc.description.abstractWe point out that in the early universe, for temperatures in the approximate interval 150-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Its thermal conductivity (previously calculated) allows the characterization of entropy production due to equilibration (damping) of thermal fluctuations. Simple model distributions of thermal fluctuations are considered and the associated entropy production evaluated.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipSpanish Excellence Network on Hadronic Physics (HADROnet) = Red de Excelanecia "Física Hadrónica" (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipActividad Investigadora CONSOLIDER - INGENIO 2010 (MINECO)
dc.description.sponsorshipCentro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN)
dc.description.sponsorshipPrincipado de Asturias
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39828
dc.identifier.doi10.1142/S0217751X16501189
dc.identifier.issn0217-751X
dc.identifier.officialurlhttp://dx.doi.org/10.1142/S0217751X16501189
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.relatedurlhttps://arxiv.org/abs/1507.06386
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18993
dc.issue.number20-21
dc.journal.titleInternational journal of modern physics A
dc.language.isoeng
dc.publisherWorld scientific publ co pte LTD
dc.relation.projectIDFIS2014-57026-REDT
dc.relation.projectIDFPA2011-27853-C02-01
dc.relation.projectIDFPA2014- 53375-C2-1-P
dc.relation.projectIDUCM (910309)
dc.relation.projectIDGRUPIN 14-108
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordEntropy production
dc.subject.keywordPion gas
dc.subject.keywordParticle cosmology
dc.subject.keywordHadron and lepton era
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleEntropy production in the early-cosmology pionic phase
dc.typejournal article
dc.volume.number31
dcterms.references1. J. Rafelski and J. Birrell, J. Phys. Conf. Ser. 509, 012014 (2014). 2. J. Rafelski and J. Birrell, arXiv:1404.6005. 3. J. Rafelski, Nucl. Phys. B (Proc. Suppl.) 243-244, 155 (2013). 4. J. Birrell, C.-T. Yang and J. Rafelski, arXiv:1406.1759. 5. A. Faessler et al., EPJ Web Conf. 71, 00044 (2014). 6. J. Rafelski, Eur. Phys. J. A 51, 114 (2015). 7. N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014). 8. J. M. Torres-Rincon, Hadronic transport coefficients from effective field theories, Dissertation presented to the University of Madrid (Complutense) available as a Springer thesis 2013, doi: 10.1007/978-3-319-00425-9, arXiv:1205.0782. 9. A. Dobado, F. J. Llanes-Estrada and J. M. Torres Rincon, Proc. IVth Int. Conf. on Quarks and Nuclear Physics, Madrid, 2006, arXiv:hep-ph/0702130. 10. A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). 11. L. M. Abreu et al., Ann. Phys. 326, 2737 (2011). 12. D. Cabrera et al., J. Phys. Conf. Ser. 503, 012017 (2014). 13. D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. D 73, 045025 (2006). 14. D. Davesne, Phys. Rev. C 53, 3069 (1996). 15. M. Prakash, M. Prakash, R. Venugopalan and G. M. Welke, Phys. Rev. Lett. 70, 1228 (1993). 16. S. Mitra and S. Sarkar, Phys. Rev. D 89, 054013 (2014). 17. I. Kuznetsova and J. Rafelski, Phys. Rev. C 82, 035203 (2010), arXiv:1002.0375. 18. I. Kuznetsova, D. Habs and J. Rafelski, Phys. Rev. D 78, 014027 (2008). 19. F. S. Labini, Class. Quantum Grav. 28, 164003 (2011). 20. ALICE Collab. ( B. B. Abelev et al.), Phys. Lett. B 728, 25 (2014). 21. Planck Collab. (P. A. R. Ade et al.), Planck 2015 results, XIII: Cosmological parameters, arXiv:1502.01589[astro-ph.CO]. 22. Planck Collab. (P. A. R. Ade et al.), Planck 2015 results, XX: Constraints on inflation. 23. Particle Data Group ( J. Beringer et al.), Phys. Rev. D 86, 010001 (2012). 24. S. Burles, K. M. Nollett and M. S. Turner, Astrophys. J. 552, L1 (2001). 25. S. Weinberg, Cosmology, 1st edn. (Oxford University Press, 2008). 26. G. Lebon, D. Jou and J. Casas-Vázquez, Understanding Nonequilibrium Thermodynamics, 1st edn. (Springer-Verlag, Berlin, 2008), see Eq. (2.47). 27. E. Milotti, Invited paper at the 2ndo. Encuentro del Grupo Latinoamericano de Emision Acustica y 1ro. Iberoamericano, E-GLEA-2, Buenos Aires (Argentina), 11–14 September 2001, arXiv:physics/0204033.
dspace.entity.typePublication
relation.isAuthorOfPublication16523fad-99a9-422c-9a8e-c949ccffadec
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery16523fad-99a9-422c-9a8e-c949ccffadec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DobadoAntonio114preprint.pdf
Size:
785.42 KB
Format:
Adobe Portable Document Format

Collections