Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Principal components analysis of extensive air showers applied to the identification of cosmic TeV gamma-rays

dc.contributor.authorFaleiro, E.
dc.contributor.authorGómez Gómez, José María
dc.contributor.authorMuñoz Muñoz, Laura
dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorRetamosa Granado, Joaquín
dc.date.accessioned2023-06-20T10:49:21Z
dc.date.available2023-06-20T10:49:21Z
dc.date.issued2004
dc.description© 2004. The American Astronomical Society. All rights reserved. This work is supported in part by Spanish Government grants for the research projects BFM2003-04147-C02 and FTN2003-08337-C04-04.
dc.description.abstractWe apply a principal components analysis (PCA) to the secondary particle density distributions at ground level produced by cosmic gamma-rays and protons. For this purpose, high-energy interactions of cosmic rays with Earth's atmosphere and the resulting extensive air showers have been simulated by means of the CORSIKA Monte Carlo code. We show that a PCA of the two-dimensional particle density fluctuations provides a decreasing sequence of covariance matrix eigenvalues that have typical features of a polynomial law, which are different for different primary cosmic rays. This property is applied to the separation of electromagnetic showers from proton simulated extensive air showers, and it is proposed as a new discrimination method that can be used experimentally for gamma-proton separation. A cutting parameter related to the polynomial behavior of the decreasing sequence of covariance matrix eigenvalues is calculated, and the efficiency of the cutting procedure for gamma-proton separation is evaluated.en
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27787
dc.identifier.citationFaleiro E, Gómez J M G, Muñoz L, Relaño A and Retamosa J 2004 Principal Components Analysis of Extensive Air Showers Applied to the Identification of Cosmic TeV Gamma-Rays ApJS 155 167
dc.identifier.doi10.1086/423788
dc.identifier.issn0067-0049
dc.identifier.officialurlhttp://dx.doi.org/10.1086/423788
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51287
dc.issue.number1
dc.journal.titleAstrophysical Journal Supplement Series
dc.language.isoeng
dc.page.final173
dc.page.initial167
dc.publisherUniversity Chicago Press
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordPoint sources
dc.subject.keywordFluctuations
dc.subject.keywordRadiation
dc.subject.keywordSpectra
dc.subject.keywordSearch
dc.subject.keywordNoise
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titlePrincipal components analysis of extensive air showers applied to the identification of cosmic TeV gamma-rays
dc.typejournal article
dc.volume.number155
dcterms.referencesAharonian, F. A., et al. 2002, A&A, 390, 39 Atkins, R., et al. 2003, ApJ, 595, 803 Bailer-Jones, C. A. L., Irwin, M., Gilmore, G., & von Hippel, T. 1997, MNRAS, 292, 157 Bock, R. K., et al. 2001, Nucl. Instrum. Methods Phys. Res., 516, 511 Camin, D. V. 2004, Nucl. Instrum. Methods Phys. Res., 518, 172 Chilingaryan, A. A. 1995, Pattern Recognition Lett., 16, 333 Edwards, W., Lindman, H., & Savage, L. J. 1990, in Robustness of Bayesian Analyses, ed. J. B. Kadane ( North Holland: Elsevier) Faleiro, E., & Contreras, J. L. 1998, J. Phys., G24, 1795 Faleiro, E., & Gómez, J. M. G. 1999, Europhys. Lett., 45, 437 ———. 2001, Fluctuation & Noise Lett., 1, L117 Faleiro, E., Gómez, J. M. G., & Relaño, A. 2003, Astropart. Phys., 19, 617 Faleiro, E., Gómez, J. M. G., Relaño, A., & Retamosa, J. 2004, Astropart. Phys., in press Fegan, D. J. 1997, J. Phys. G, 23, 1013 Gaisser, T. K. 1990, Cosmic Rays and Particle Physics (Cambridge: Cambridge Univ. Press) Gao, J. B., Cao, Y., & Lee, J.-M. 2003, Phys. Lett. A, 314, 392 Glazebrook, K., Offer, A. R., & Deeley, K. 1998, ApJ, 492, 98 Greisen, K. 1956, Prog. Cosmic Ray Phys., 3, 3 Heck, D., & Knapp, J. 2002, Extensive Air Shower Simulation with CORSIKA ( Karlsruhe: Inst. Kernphys.) Kamata, K., & Nishimura, J. 1958, Prog. Theor. Phys. Suppl., 6, 93 Karle, A., et al. 1995, Astropart. Phys., 4, 1 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in FORTRAN (Cambridge: Cambridge: Univ. Press) Ronen, S., Aragón Salamanca, A., & Lahav, O. 1999, MNRAS, 303, 284 Schafer, B. M., et al. 2001, Nucl. Instrum. Methods Phys. Res., 465, 394 Sokolsky, P. 1989, Introduction to Ultra–high Energy Cosmic Ray Physics (New York: Addison Wesley) Zacks, S. 1977, The Theory of Statistical Inference (New York: Wiley)
dspace.entity.typePublication
relation.isAuthorOfPublication41cdbde8-9afc-4edf-aa3c-1430d8ad268e
relation.isAuthorOfPublication145acd47-d011-4f1d-864c-e9f7aa0751af
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication.latestForDiscovery41cdbde8-9afc-4edf-aa3c-1430d8ad268e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano48libre.pdf
Size:
914.49 KB
Format:
Adobe Portable Document Format

Collections