Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Representing open 3-manifolds as 3-fold branched coverings

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:48:05Z
dc.date.available2023-06-20T18:48:05Z
dc.date.issued2002
dc.description.abstractIt is a celebrated result of H. Hilden and the author of the present paper that every closed, connected, oriented 3-manifold is a 3-fold irregular (dihedral) branched covering of the 3-sphere, branched over a knot. Here the author explores a generalization of this result to the case of non-compact manifolds. It is shown that a non-compact, connected, oriented 3-manifold is a 3-fold irregular branched covering of an open subspace of S3, branched over a locally finite family of proper arcs. The branched covering is constructed in such a way that it extends to a branched covering (suitably understood) of the Freudenthal end compactification over the entire 3-sphere. In particular all (uncountably many) contractible open 3-manifolds may be expressed as 3-fold branched coverings of R3, branched over a locally finite collection of proper arcs.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22287
dc.identifier.issn1139-1138
dc.identifier.officialurlhttp://www.mat.ucm.es/serv/revmat/vol15-2j.html
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58656
dc.issue.number2
dc.journal.titleRevista matemática complutense
dc.language.isoeng
dc.page.final542
dc.page.initial533
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162
dc.subject.keyword3-manifolds
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleRepresenting open 3-manifolds as 3-fold branched coverings
dc.typejournal article
dc.volume.number15
dcterms.referencesIsrael Berstein, Allan L. Edmonds, The degree and branch set of a branched covering. Invent. Math. 45 (1978) 213–220. Joan S. Birman, Hugh M. Hilden, The homeomorphism problem for S3. Bull. Amer. Math. Soc. 79 (1973) 1006–1010. E. M. Brown, T. W. Tucker, On proper homotopy theory for noncompact 3-manifolds. Trans. Amer. Math. Soc. 188 (1974) 105–126. Allan L. Edmonds, Branched coverings and orbit maps. Michigan Math. J. 23 (1976), 289–301. Ralph H. Fox, Covering spaces with singularities. 1957 A symposium in honor of S. Lefschetz pp. 243–257 Princeton University Press, Princeton, N.J. Ralph H. Fox, A note on branched cyclic covering of spheres. Rev. Mat. Hisp.-Amer. (4) 32 (1972) 158–166. Hans Freudenthal, Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv. 17 (1945) 1–38. John Hempel, Construction of orientable 3-manifolds. 1962 Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) pp. 207–212 Prentice-Hall, Englewood Cliffs, N.J. Hugh M. Hilden, Every closed orientable 3-manifold is a 2-fold branched covering space of S3. Bull. Amer. Math. Soc. 80 (1974) 1243–1244. Hugh M. Hilden, Three-fold branched coverings of S3. Amer. J. Math. 98 (1976), no. 4, 989–997. Jim Hoste, Framed link diagrams of open 3-manifolds. KNOTS '96 (Tokyo), 515–537, World Sci. Publishing, River Edge, NJ, 1997. Greg Kuperberg, A volume-preserving counterexample to the Seifert conjecture. Comment. Math. Helv. 71 (1996), no. 1, 70–97. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds. Ann. of Math. (2) 76 (1962) 531–540. Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56 (1952) 96–114. Edwin E. Moise, Geometric topology in dimensions 2 and 3. Graduate Texts in Mathematics, Vol. 47. Springer-Verlag, New York-Heidelberg, 1977. x+262 pp. José M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of S3. Bull. Amer. Math. Soc. 80 (1974) 845–846. José M. Montesinos, Three-manifolds as 3-fold branched covers of S3. Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85–94. José M. Montesinos, A note on 3-fold branched coverings of S3 Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 2, 321–325. José M. Montesinos, Open 3-manifolds as branched coverings. Rev. R. Acad. Cie. Serie A Mat. 95(2), (2001) 279–280. Andrew H. Wallace, Modifications and cobounding manifolds. Canad. J. Math. 12 (1960) 503–528.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos62.pdf
Size:
213.03 KB
Format:
Adobe Portable Document Format

Collections