Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Goodness of fit tests with weights in the classes based on (h,phi)-divergences

dc.contributor.authorLandaburu Jiménez, María Elena
dc.contributor.authorPardo Llorente, Leandro
dc.date.accessioned2023-06-20T16:58:30Z
dc.date.available2023-06-20T16:58:30Z
dc.date.issued2000
dc.description.abstractThe aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted (h, phi)-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [5] and Kapur [11]. The weighted (h, phi)-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16512
dc.identifier.issn0023-5954
dc.identifier.officialurlhttp://dml.cz/bitstream/handle/10338.dmlcz/135373/Kybernetika_36-2000-5_6.pdf
dc.identifier.relatedurlhttp://dml.cz/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57552
dc.issue.number5
dc.journal.titleKybernetika
dc.language.isoeng
dc.page.final602
dc.page.initial589
dc.publisherInstitute of Information Theory and Automation of the ASCR
dc.relation.projectIDPB96-0635
dc.rights.accessRightsrestricted access
dc.subject.cdu519.7
dc.subject.keywordDivergence
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleGoodness of fit tests with weights in the classes based on (h,phi)-divergences
dc.typejournal article
dc.volume.number36
dcterms.referencesI. Csiszar: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences Ser A. 8 (1963), 85-108. J. J. Dik and M. C. M. de Gunst: The distribution of general quadratic forms in normal variables. Statistica Neerlandica 39 (1985), 14-26. A. R. Eckler: A survey of coverage problems associated with point and area targets. Technometrics 11 (1969), 561-589. T. S. Ferguson: A Course in Large Sample Theory. Chapman & Hall, London 1996. O. Frank, M. L. Menendez and L. Pardo: Asymptotic distributions of weighted divergence between discrete distributions. Comm. Statist. - Theory Methods 21 (1998), 4, 867-885. D. A.S. Fraser: Non-parametrics Methods in Statistics. Wiley, New York 1957. S. Guia§u: Grouping data by using the weighted entropy. J. Statist. Plann. Inference I5(1986), 63-69. S.S. Gupta: Bibliography on the multivariate normal integrals and related topics. Ann. Math. Statist. 34 (1963), 829-838. D.R. Jensen and H. Solomon: A Gaussian approximation to the distribution of a definite quadratic form. J. Amer. Statist. Assoc. 57(1972), 340, 898-902. N.L. Johnson and S. Kotz: Tables of distributions of positive definite quadratic forms in central normal variables. Sankhya, Ser. B SO (1968), 303-314. J.N. Kapur: Measures of Information and their Applications. Wiley, New York 1994. S. Kotz, N.M. Johnson and D.W. Boid: Series representation of quadratic forms in normal variables I. Central case. Annals Math. Statist. 38 (1967), 823-837. F. Liese and I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. G. Longo: Quantitative and Qualitative Measure of Information. Springer, New York 1970. M. L. Menendez, D. Morales, L. Pardo and M. Salicrii: Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: A unified stydy. Statistical Papers 55 (1995). 1-29. M. L. Menendez, D. Morales, L. Pardo and I. Vajda: Approximations to powers of (^-disparity goodness of fit tests. Submitted. R. Modarres and R. W. Jernigan: Testing the equality of correlation matrices. Comm. Statist. - Theory Methods 21 (1992), 2107-2125. J.N.K. Rao and A.J. Scott: The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc 75(1981), 221-230. H. Solomon: Distribution of Quadratic Forms - Tables and Applications. Applied Mathematics and Statistics Laboratories, Technical Report 45, Stanford University,Stanford, Calif.1960. C T . Taneja: On the mean and the variance of estimates of Kullback information and relative useful information measures. Apl. Mat. SO (1985), 166-175. I. Vajda: Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht 1989. K. Zografos, K. Ferentinos and Papaioannou: (^-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests. Comm. Statist. - Theory Methods 19 (1990), 5, 1785-1802.
dspace.entity.typePublication
relation.isAuthorOfPublication0cf1bfef-b105-422e-9f20-80ca13261ed7
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery0cf1bfef-b105-422e-9f20-80ca13261ed7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Landaburu06.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format

Collections