Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Open subgroups, compact subgroups amd Binz-Butzmannn reflexivity

Loading...
Thumbnail Image

Full text at PDC

Publication date

1996

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

A number of attempts to extend Pontryagin duality theory to categories of groups larger than that of locally compact abelian groups have been made using different approaches. The extension to the category of topological abelian groups created the concept of reflexive group. In this paper we deal with the extension of Pontryagin duality to the category of convergence abelian groups. Reflexivity in this category was defined and studied by E. Binz and H. Butzmann. A convergence group is reflexive (subsequently called BB-reflexive by us in our work) if the canonical embedding into the bidual is a convergence isomorphism. Topological abelian groups are, in an obvious way, convergence groups; therefore it is natural to compare reflexivity and BB-reflexivity for them. Chasco and Martín-Peinador (1994) show that these two notions are independent. However some properties of reflexive groups also hold for BB-reflexive groups, and the purpose of this paper is to show two of them. Namely, we prove that if an abelian topological group G contains an open subgroup A, then G is BB-reflexive if and only if A is BB-reflexive. Next, if G has sufficiently many continuous characters and K is a compact subgroup of G, then G is BB-reflexive if and only if G/K is BB-reflexive.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections