Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

A comparison of fixed-step-size and Bayesian staircases for sensory threshold estimation

dc.contributor.authorAlcalá Quintana, Rocío
dc.contributor.authorGarcía Pérez, Miguel Ángel
dc.date.accessioned2023-06-20T11:08:14Z
dc.date.available2023-06-20T11:08:14Z
dc.date.issued2007
dc.description.abstractFixed-step-size (FSS) and Bayesian staircases are widely used methods to estimate sensory thresholds in 2AFC tasks, although a direct comparison of both types of procedure under identical conditions has not previously been reported. A simulation study and an empirical test were conducted to compare the performance of optimized Bayesian staircases with that of four optimized variants of FSS staircase differing as to up-down rule. The ultimate goal was to determine whether FSS or Bayesian staircases are the best choice in experimental psychophysics. The comparison considered the properties of the estimates (i.e. bias and standard errors) in relation to their cost (i.e. the number of trials to completion). The simulation study showed that mean estimates of Bayesian and FSS staircases are dependable when sufficient trials are given and that, in both cases, the standard deviation (SD) of the estimates decreases with number of trials, although the SD of Bayesian estimates is always lower than that of FSS estimates (and thus, Bayesian staircases are more efficient). The empirical test did not support these conclusions, as (1) neither procedure rendered estimates converging on some value, (2) standard deviations did not follow the expected pattern of decrease with number of trials, and (3) both procedures appeared to be equally efficient. Potential factors explaining the discrepancies between simulation and empirical results are commented upon and, all things considered, a sensible recommendation is for psychophysicists to run no fewer than 18 and no more than 30 reversals of an FSS staircase implementing the 1-up/3-down rule.
dc.description.departmentDepto. de Psicobiología y Metodología en Ciencias del Comportamiento
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte
dc.description.sponsorshipMinisterio de Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35701
dc.identifier.doi10.1163/156856807780421174
dc.identifier.issn0169-1015
dc.identifier.officialurlhttp://dx.doi.org/10.1163/156856807780421174
dc.identifier.relatedurlhttp://booksandjournals.brillonline.com/content/journals/10.1163/156856807780421174
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51752
dc.issue.number3
dc.journal.titleSpatial vision
dc.language.isoeng
dc.page.final218
dc.page.initial197
dc.publisherBrill
dc.relation.projectIDAP2001-0759
dc.relation.projectIDBSO2001-1685
dc.rights.accessRightsrestricted access
dc.subject.cdu159.9.07
dc.subject.keywordAdaptive methods
dc.subject.keywordBayesian procedures
dc.subject.keywordFixed-step-size staircases
dc.subject.keywordThreshold estimation
dc.subject.keyword2AF
dc.subject.ucmPsicología experimental
dc.subject.unesco6106 Psicología Experimental
dc.titleA comparison of fixed-step-size and Bayesian staircases for sensory threshold estimation
dc.typejournal article
dc.volume.number20
dcterms.referencesAlcalá-Quintana, R. and García-Pérez, M. A. (2004). The role of parametric assumptions in adaptive Bayesian estimation, Psychological Methods 9, 250–271. Alcalá-Quintana, R. and García-Pérez, M. A. (2005). Stopping rules in Bayesian adaptive threshold estimation, Spatial Vision 18, 347–374. Brand, T. and Kollmeier, B. (2002). Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests, J. Acoustic. Soc. Amer. 111,2801–2810. Brown, L. (1996). Additional rules for the transformed up–down method in psychophysics, Perception and Psychophysics 58, 959–962. De Valois, K. K. (1977). Spatial frequency adaptation can enhance contrast sensitivity, Vision Research 17, 1057–1065. Emerson, P. L. (1986). Observations on maximum likelihood and Bayesian methods of forced choice sequential threshold estimation, Perception and Psychophysics 39, 151–153. Evans, M., Hastings, N. and Peacock, B. (2000). Statistical Distributions, 3rd edn. Wiley, New York. García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: asymptotic and smallsample properties, Vision Research 38, 1861–1881. García-Pérez, M. A. and Alcalá-Quintana, R. (2005). Sampling plans for fitting the psychometric function, Span. J. Psychol. 8, 256–289. [Available at http://www.ucm.es/sjp] García-Pérez, M. A. and Alcalá-Quintana, R. (in press). Bayesian adaptive estimation of arbitrary points on a psychometric function, Brit. J. Mathemat. Statist. Psychol. Gilchrist, J. M., Jerwood, D. and Ismaiel, H. S. (2005). Comparing and unifying slope estimates across psychometric function models, Perception and Psychophysics 67, 1289–1303. Green, D. M. (1990). Stimulus selection in adaptive psychophysical procedures, J. Acoustic. Soc. Amer. 87, 2662–2674. Green, D. M. and Luce, R. D. (1975). Parallel psychometric functions from a set of independent detectors, Psychol. Rev. 82, 483 486. Hall, J. L. (1981). Hybrid adaptive procedure for estimation of psychometric functions, J. Acoustic. Soc. Amer. 69, 1763–1769. Kaernbach, C. (1991). Simple adaptive testing with the weighted up–down method, Perception and psychophysics 49, 227–229. King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C. and Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation, Vision Research 34, 885–912. King-Smith, P. E. and Rose, D. (1997). Principles of an adaptive method for measuring the slope of the psychometric function, Vision Research 37, 1595–1604. Kontsevich, L. L. and Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold, Vision Research 39, 2729–2737. Laming, D. and Marsh, D. (1988). Some performance tests of QUEST on measurements of vibrotactile thresholds, Perception and Psychophysics 44, 99–107. Leek, M. R. (2001). Adaptive procedures in psychophysical research, Perception and Psychophysics 63, 1279–1292. Nachmias, J. (1981). On the psychometric function for contrast detection, Vision Research 21, 215–223. Numerical Algorithms Group (1999). NAG Fortran Library Manual, Mark 19. Oxford: Author Quick, R. F., Jr. (1974). A vector-magnitude model of contrast detection, Kybernetik 16, 65–67. Saberi, K. and Green, D. (1997). Evaluation of maximum-likelihood estimators in nonintensive auditory psychophysics, Perception and Psychophysics 59, 867–876. Schlauch, R. and Carney, E. (2004). Thresholds for inattentive listeners obtained with adaptive forcedchoice procedures, J. Acoustic. Soc. Amer. 115, 2387–2388. Shelton, B. R., Picardi, M. C. and Green, D. M. (1982). Comparison of three adaptive psychophysical procedures, J. Acoustic. Soc. Amer. 71, 1527–1533. Snoeren, P. R. and Puts, M. J. H. (1997). Multiple parameter estimation in an adaptive psychometric method: MUEST, an extension of the QUEST method, J. Mathemat. Psychol. 41, 431–439. Stuart, G. W., McAnally, K. I. and Castles, A. (2001). Can contrast sensitivity functions in dyslexia be explained by inattention rather than a magnocellular deficit? Vision Research 41, 3205–3211. Swift, D., Panish, S. and Hippensteel, B. (1997). The use of VisionWorks™ in visual psychophysics research, Spatial Vision 10, 471–477. Taylor, M. M. (1971). On the efficiency of psychophysical measurement, J. Acoustic. Soc. Amer. 49, 505–508. Taylor, M. M. and Creelman, C. D. (1967). PEST: Efficient estimates on probability functions, J. Acoustic. Soc. Amer. 41, 782–787. Treutwein, B. (1995). Adaptive psychophysical procedures, Vision Research 35, 2503–2522. Watson, A. B. and Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method, Perception and Psychophysics 33, 113–120. Wetherill, G. B. and Levitt, H. (1965). Sequential estimation of points on a psychometric function, Brit. J. Mathemat. Statist. Psychol. 18, 1–10. Xue, P., Thomas, C. W., Gilmore, C. G. and Wilson, D. L. (1998). An adaptive reference/test paradigm: application to pulsed fluoroscopy perception, Behav. Res. Methods, Instruments, Computers 30, 332–348. Zwislocki, J., Maire, F., Feldman, A. S. and Rubin, H. (1958). On the effect of practice and motivation on the threshold of audibility, J. Acoustic. Soc. Amer. 30, 254–262.
dspace.entity.typePublication
relation.isAuthorOfPublication0a7dbcf6-8a0b-4b47-91af-79bb5db7bb52
relation.isAuthorOfPublicatione5c3695e-f861-4397-94d7-7aa543f0a630
relation.isAuthorOfPublication.latestForDiscovery0a7dbcf6-8a0b-4b47-91af-79bb5db7bb52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A comparison of fixed-step-size and Bayesian staircases Alcalá Quintana y García Pérez (2007).pdf
Size:
398.3 KB
Format:
Adobe Portable Document Format

Collections