Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Design sensitivity and mixing uniformity of a micro-fluidic mixe

dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorLópez Redondo, Juana
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.contributor.authorSantiago, Juan G.
dc.date.accessioned2023-06-18T06:49:21Z
dc.date.available2023-06-18T06:49:21Z
dc.date.issued2016
dc.description.abstractWe consider a particular hydrodynamic focusing microfluidic mixer used to initiate the folding process of individual proteins, which has been designed in a previous work and exhibited a mixing time of 0.1 μs. The aim of the current paper is twofold. First, we explore the sensitivity of mixing time to key geometric and flow parameters. In particular, we study the angle between inlets, the shape of the channel intersections, channel widths, mixer depth, mixer symmetry, inlet velocities, working fluid physical properties, and denaturant concentration thresholds. Second, we analyze the uniformity of mixing times as a function of inlet flow streamlines. We find the shape of the intersection, channel width, inlet velocity ratio, and asymmetries have strong effects on mixing time; while inlet angles, mixer depth, fluid properties, and concentration thresholds have weaker effects. Also, the uniformity of the mixing time is preserved for most of the inlet flow and distances of down to within about 0.4 μm of the mixer wall. We offer these analyses of sensitivities to imperfections in mixer geometry and flow conditions as a guide to experimental efforts which aim to fabricate and use these types of mixers. Our study also highlights key issues and provides a guide to the optimization and practical design of other microfluidic devices dependent on both geometry and flow conditions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipEuropean Regional Development Fund (ERDF)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipBanco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35214
dc.identifier.doi10.1063/1.4939006
dc.identifier.issn1070-6631
dc.identifier.officialurlhttp://scitation.aip.org/content/aip/journal/pof2/28/1/10.1063/1.4939006
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24307
dc.issue.number1
dc.journal.titlePhysics of fluids
dc.language.isoeng
dc.page.final012005
dc.publisherAIP Publishing
dc.relation.projectIDMTM2011-22658
dc.relation.projectIDTIN2012-37483
dc.relation.projectIDP10-TIC-6002
dc.relation.projectIDP11-TIC-7176
dc.relation.projectIDP12-TIC30
dc.relation.projectIDResearch group MOMAT (Reference No. 910480)
dc.rights.accessRightsopen access
dc.subject.cdu532.5
dc.subject.ucmHidrodinámica
dc.subject.unesco3301.12 Hidrodinámica
dc.titleDesign sensitivity and mixing uniformity of a micro-fluidic mixe
dc.typejournal article
dc.volume.number28
dcterms.referencesJ. Dunbar, H. P. Yennawar, S. Banerjee, J. Luo, and G. K. Farber, “The effect of denaturants on protein structure,” Protein Sci. 6(8), 1727–1733 (1997). J. A. Infante, B. Ivorra, A. M. Ramos, and J. M. Rey, “On the modeling and simulation of high pressure processes and inactivation of enzymes in food engineering,” Math. Models Methods Appl. Sci. 19(12), 2203–2229 (2009). J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, “Biotechnology at low reynolds numbers,” Biophys. J. 71(6),3430–3441 (1996). B. Ivorra, J. L. Redondo, J. G. Santiago, P. M. Ortigosa, and A. M. Ramos, “Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding,” Phys. Fluids 25(3), 1–17 (2013). D. E. Hertzog, B. Ivorra, B. Mohammadi, O. Bakajin, and J. G. Santiago, “Optimization of a microfluidic mixer for studying protein folding kinetics,” Anal. Chem. 78(13), 4299–4306 (2006). D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004). S. Yao and O. Bakajin, “Improvements in mixing time and mixing uniformity in devices designed for studies of proteins folding kinetics,” Anal. Chem. 79(1), 5753–5759 (2007). B. Ivorra, B. Mohammadi, J. G. Santiago, and D. E. Hertzog, “Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices,” Int. J. Numer. Method Eng. 66(2), 319–333 (2006). B. Ivorra, A. M. Ramos, and B. Mohammadi, “Semideterministic global optimization method: Application to a control problem of the burgers equation,” J. Optim. Theory Appl. 135(3), 549–561 (2007). B. Ivorra, B. Mohammadi, and A. M. Ramos, “Optimization strategies in credit portfolio management,” J. Global Optim. 43(2), 415–427 (2009). J. L. Redondo, J. Fernández, I. García, and P. M. Ortigosa, “A robust and efficient global optimization algorithm for planar competitive location problems,” Ann. Oper. Res. 167(1), 87–105 (2009). K. Kawahara and C. Tanford, “Viscosity and density of aqueous solutions of urea and guanidine hydrochloride,” J. Biol. Chem. 241(13), 3228–3232 (1966). B. Massey and J. Ward-Smith, Mechanics of Fluids, 8th ed. (Taylor & Francis, 2005). H. Y. Park, X. Qiu, E. Rhoades, J. Korlach, L. Kwok, W. R. Zipfel, W. W. Webb, and L. Pollack, “Achieving uniform mixing in a microfluidic device: Hydrodynamic focusing prior to mixing,” Anal. Chem. 78(13), 4465–4473 (2006). A. Rogacs and J. G. Santiago, “Temperature effects on electrophoresis,” Anal. Chem. 85(10), 5103–5113 (2013). S. Sato, C. J. Sayid, and D. P. Raleigh, “The failure of simple empirical relationships to predict the viscosity of mixed aqueous solutions of guanidine hydrochloride and glucose has important implications for the study of protein folding,” Protein Sci. 43(9), 1601–1603 (2000). G. Gannon, J. A. Larsson, J. C. Greer, and D. Thompson, “Guanidinium chloride molecular diffusion in aqueous and mixed water-ethanol solutions,” J. Phys. Chem. B 112(30), 8906–8911 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra60.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format

Collections