On quasidomination of compacta

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-21T02:06:10Z
dc.date.available2023-06-21T02:06:10Z
dc.date.issued1984
dc.description.abstractThe notions of quasidomination and quasi-equivalence of compacta were introduced by K. Borsuk [Fund. Math. 93 (1976), no. 3, 197–212. These relations are weaker than the relations of shape domination and shape equivalence. According to Borsuk they allow the consideration of shape from a quantitative point of view. In this note the author studies several properties of quasidomination in connection with some shape invariants and X -likeness. For example, he obtains the following generalization of a result of Borsuk. Theorem: Let X and Y be two compacta lying in the Hilbert cube. If Y is movable and X -like, then Y is quasidominated by X . Furthermore, he obtains a simple characterization of quasidomination of movable compacta. He also shows that if an FANR compactum Y is quasidominated by X , then Y is shape dominated by X . The author points out that this last result can also be obtained by using the work of L. Boxer and R. B. Sher [Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), no. 9-10, 849–853.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21979
dc.identifier.issn0010-1354
dc.identifier.officialurlhttp://journals.impan.gov.pl/cm/
dc.identifier.relatedurlhttp://www.impan.pl/EN/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64854
dc.issue.number2
dc.journal.titleColloquium Mathematicum
dc.page.final217
dc.page.initial213
dc.publisherInstitute of Mathematics Polish Academy of Sciences
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.143
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn quasidomination of compacta
dc.typejournal article
dc.volume.number48
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Collections