Absense of dissipative solutions of the Schrödinger and Klein-Gordon equations with logarithmic nonlinearity

dc.contributor.authorFernández-Rañada, Antonio
dc.contributor.authorCuesta, José Antonio
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T18:58:13Z
dc.date.available2023-06-20T18:58:13Z
dc.date.issued1988-04-11
dc.description© 1988 Published by Elsevier BV. We are grateful to Professor A. Alvarez and Professor L. Vazquez for discussions. This work has been partially supported by Dirección General de Investigación Científica y Técnica, under grant PB86-0005.
dc.description.abstractIt is shown that the Schrödinger equation nor the Klein-Gordon one with logarithmic nonlinearities have dissipative solutions. In the case of one-dimensional space, numerical experiments with different Cauchy data, in the nonrelativistic case, lead always to final states consisting only in oscillating gaussons.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25239
dc.identifier.doi10.1016/0375-9601(88)90191-0
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/0375-9601(88)90191-0
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59020
dc.issue.number06-jul
dc.journal.titlePhysics Letters A
dc.page.final366
dc.page.initial360
dc.publisherElsevier
dc.relation.projectIDPB86-0005.
dc.rights.accessRightsmetadata only access
dc.subject.cdu537
dc.subject.cdu536
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.ucmTermodinámica
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2213 Termodinámica
dc.titleAbsense of dissipative solutions of the Schrödinger and Klein-Gordon equations with logarithmic nonlinearity
dc.typejournal article
dc.volume.number128
dcterms.references[1] I. Bialynicki-Birula, I. Mycielski, Ann. Phys. (NY) 100, 1976, 65. [2] J. Oficjalski, I. Bialynicki-Birula, Acta Phys. Pol. B 9, 1978, 759. [3] A. Shimony, Phys. Rev. A 20, 1979, 394. [4] C.G. Shull, D.K. Atwood, J. Arthur, M.A. Horne, Phys. Rev. Lett. 44, 1980, 765. [5] R. Gähler, A.G. Klein, A. Zeilinger, Phys. REv. A 23, 1981, 1611. [6] E.F. Hefter, Phys. Rev. A32, 1985, 1201. [7] Th. Cazenave, A. Haraux, Ann. Fac. Sci. Univ. Toulouse 2, 1980, 21. [8] Th. Cazenave, Nonlin. Anal. Theory Methods Appl. 7, n. 10, 1983, 1127. [9] Ph. Blanchard, J. Stubbe, L. Vázquez, Ann. Inst. Henri Poincaré, to be published. [10] T.F. Morris, Phys. Lett. B 76, 1978, 337. [11] J. Werle, Phys. Lett. B 71, 1977, 367. [12] A. Goldberg, H.M. Schey, J.L. Schwartz, Am. J. Phys. 35, 1967, 177.
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Collections