Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quasi-exact solvability and the direct approach to invariant subspaces

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T10:55:32Z
dc.date.available2023-06-20T10:55:32Z
dc.date.issued2005-03-04
dc.description©IOP science. The research of DGU is supported in part by a CRM-ISM Postdoctoral Fellowship and the Spanish Ministry of Education under grant EX2002-0176. The research of NK and RM is supported by the National Science and Engineering Research Council of Canada. DGU would like to thank the Department of Mathematics and Statistics of alhousie University for their warm hospitality.
dc.description.abstractWe propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: we show that the generalized Lame potential possesses four algebraic sectors, and describe a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipNational Science and Engineering Research Council of Canada
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30913
dc.identifier.doi10.1088/0305-38/9/011
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/38/9/011
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttp://arxiv.org/abs/nlin/0401030
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51461
dc.issue.number9
dc.journal.titleJournal of physics A: Mathematical and general
dc.language.isoeng
dc.page.final2019
dc.page.initial2005
dc.publisherIOP science
dc.relation.projectIDCRM-ISM Postdoctoral Fellowship
dc.relation.projectIDEX2002-0176
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordDifferential-operators
dc.subject.keywordLame equation
dc.subject.keywordPotentials
dc.subject.keywordAlgebra
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuasi-exact solvability and the direct approach to invariant subspaces
dc.typejournal article
dc.volume.number38
dcterms.references[1] Alhassid, Y., Gürsey, F. and Iachello, F.: Potential scattering, transfer matrix and group theory, Phys. Rev. Lett. 50 873-876 (1983). [2] Arscott, F. M.: Periodic Differential Equations, Oxford: Pergamon. 1964. [3] Brihaye, Y. and Godard, G.: Quasi-exactly solvable extensions of the Lamé equation, J. Math. Phys. 34 5283-5291 (1993) [4] Brihaye, Y. and Hartmann B.: Multiple algebraisations elliptic CalogeroSutherland model, J. Math. Phys. 44 1576 (2003) [5] Finkel, F., González-López, A. and Rodrígez, M. A.: A new algebraization of the Lamé equation, J. Phys. A 33 1519-1542 (2000) [6] Finkel, F., González-Lopez, A., Maroto, A. L., and Rodrígez, M. A.: The Lamé equation in parametric resonance after inflation, Phys. Rev. D62103515 (2000) [7] Finkel, F. and Kamran, N.: The Lie algebraic structure of differential operators admitting invariant spaces of polynomials, Adv. Appl. Math. 20, 300–322 (1998) [8] Gómez-Ullate, D., Gánzalez-López, A. and Rodríguez, M.A.: Exact solutions of an elliptic Calogero–Sutherland model, Phys. Lett. B511 112- 118 (2001) [9] Gómez-Ullate, D., Kamran, N. and Milson, R.: Structure theorems for non-linear differential operators with invariant multivariate polynomial subspaces, in preparation. [10] Gómez-Ullate, D., Kamran, N. and Milson, R.: The Darboux transformation and algebraic deformations of shape-invariant potentials, J. Phys. A 37 1789 - 1804 (2004) [11] González-López, A., Kamran, N. and Olver, P.J.: Normalizability of one-dimensional quasi- exactly solvable Schrödinger operators, Commun. Math. Phys. 153 117–146 (1993) [12] González-López, A., Kamran, N. and Olver, P.J.: Quasi-exact solvability, Contemp. Math. 160 113–140 (1994) [13] González-López, A., Kamran, N. and Olver, P.J.: New quasi-exactly solvable Hamiltonians in two dimensions, Commun. Math. Phys. 159 503–537 (1994) [14] Greene, P., Kofman, L., Linde, A. and Starobinsky, A.: Structure of resonance in preheating after inflation, Phys. Rev. D56 6175-6192 (1997) [15] Kamran, N., Milson, R. and Olver, P.J.: Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems, Adv. in Math. 156 286-319 (2000) [16] Kamran, N. and Olver, P.J.: Lie algebras of differential operators and Lie-algebraic potentials, J. Math. Anal. Appl. 145 342–356 (1990) [17] Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge: Cambridge University Press. 1995. [18] Post, G. and Turbiner, A. V.: Classification of linear differential operators with an invariant subspace of monomials, Russian J. Math. Phys. 3 113-122 (1995) [19] Turbiner, A.V.: Quasi-exactly solvable problems and sl(2) algebra, Commun. Math. Phys. 118, 467–474 (1988) [20] Turbiner, A.V.: Hidden algebra of the N-body Calogero problem, Phys. Lett. B320 281–286 (1994)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate24preprint.pdf
Size:
198.23 KB
Format:
Adobe Portable Document Format

Collections