Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Singular solutions for fractional parabolic boundary value problems

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

The standard problem for the classical heat equation posed in a bounded domain Ω of Rn is the initial and boundary value problem. If the Laplace operator is replaced by a version of the fractional Laplacian, the initial and boundary value problem can still be solved on the condition that the nonzero boundary data must be singular, i.e., the solution u(t, x) blows up as x approaches ∂Ω in a definite way. In this paper we construct a theory of existence and uniqueness of solutions of the parabolic problem with singular data taken in a very precise sense, and also admitting initial data and a forcing term. When the boundary data are zero we recover the standard fractional heat semigroup. A general class of integro-differential operators may replace the classical fractional Laplacian operators, thus enlarging the scope of the work. As further results on the spectral theory of the fractional heat semigroup, we show that a Weyl-type law holds in the general class, which was previously known for the restricted and spectral fractionalLaplacians, but is new for the censored (or regional) fractional Laplacian. This yields bounds on the fractional heat kerne.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections