Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces

dc.contributor.authorGarcia Barriocanal, Javier
dc.contributor.authorCezar, J. C.
dc.contributor.authorBruno, Flavio Yair
dc.contributor.authorThakur, P
dc.contributor.authorBrookes, N. B.
dc.contributor.authorUtfeld, C.
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorGiblin, S. R.
dc.contributor.authorTaylor, S. W.
dc.contributor.authorDuffy, J. A.
dc.contributor.authorDugdale, S. B.
dc.contributor.authorNakamura, T.
dc.contributor.authorKodama, K.
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorOkamoto, S.
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.date.accessioned2023-06-20T03:58:54Z
dc.date.available2023-06-20T03:58:54Z
dc.date.issued2010-09
dc.description© 2010 Macmillan Publishers Limited. We thank Andrew Millis and Giniyat Khaliullin for stimulating discussions. J.G.-B. thanks the Spanish Ministry of Science and Innovation (MICINN) for financial support through the Specialization in International Organizations fellowship. This work was supported by Spanish MICINN Grant MAT 2008 06517, Consolider Ingenio CSD2009-00013 (IMAGINE), CAM S2009-MAT 1756 (PHAMA). Work at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Some XMCD experiments were conducted with the approval of JASRI (proposal no. 2007B1516) and supported by UK EPSRC Grants EP/F062729 and EP/G056463/1.
dc.description.abstractIn systems with strong electron-lattice coupling, such as manganites, orbital degeneracy is lifted, causing a null expectation value of the orbital magnetic moment. Magnetic structure is thus determined by spin–spin superexchange. In titanates, however, with much smaller Jahn–Teller distortions, orbital degeneracy might allow non-zero values of the orbital magnetic moment, and novel forms of ferromagnetic superexchange interaction unique to t_2g electron systems have been theoretically predicted, although their experimental observation has remained elusive. In this paper, we report a new kind of Ti^3+ ferromagnetism at LaMnO_3/SrTiO_3 epitaxial interfaces. It results from charge transfer to the empty conduction band of the titanate and has spin and orbital contributions evidencing the role of orbital degeneracy. The possibility of tuning magnetic alignment (ferromagnetic or antiferromagnetic) of Ti and Mn moments by structural parameters is demonstrated. This result will provide important clues for understanding the effects of orbital degeneracy in superexchange coupling.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.sponsorshipSpecialization in International Organizations
dc.description.sponsorshipConsolider Ingenio
dc.description.sponsorshipU.S. Department of Energy, EE.UU.
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC), Reino Unido
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33492
dc.identifier.doi10.1038/ncomms1080
dc.identifier.issn2041-1723
dc.identifier.officialurlhttp://dx.doi.org/10.1038/ncomms1080
dc.identifier.relatedurlhttp://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44760
dc.journal.titleNature communications
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.projectIDMAT 2008 06517
dc.relation.projectIDCSD2009-00013 (IMAGINE)
dc.relation.projectIDPHAMA-CM (S2009-MAT1756)
dc.relation.projectIDEP/F062729
dc.relation.projectIDEP/G056463/1
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu537
dc.subject.keywordMultidisciplinary sciences
dc.subject.ucmElectricidad
dc.subject.unesco2202.03 Electricidad
dc.titleSpin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces
dc.typejournal article
dc.volume.number1
dcterms.references1. Dagotto, E. & Tokura, Y. Strongly correlated electronic materials: present and future. MRS Bull. 33, 1037–1045 (2008). 2. Imada, M., Fujimori, M. & Tokura, Y. Metal-Insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998). 3. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000). 4. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005). 5. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. B 100, 564–573 (1955). 6. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959). 7. Ulrich, C. et al. Momentum Dependence of Orbital Excitations in Mott-Insulating Titanates. Phys. Rev. Lett. 103, 107205 (2009). 8. Keimer, B. et al. Spin dynamics and orbital state in LaTiO3. Phys. Rev. Lett. 85, 3946–3949 (2000). 9. Khaliullin, B. & Maekawa, S. Orbital liquid in three-dimensional mott insulator: LaTiO3. Phys. Rev. Lett. 85, 3950–3953 (2000). 10. Haverkort, M. W. et al. Determination of the orbital moment and crystal-field splitting in LaTiO3. Phys. Rev. Lett. 94, 056401 (2005). 11. Mizokawa, T. & Fujimori, A. Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations. Phys. Rev. B 54, 5368–5380 (1996). 12. Mizokawa, T., Khomskii, D. I. & Sawatzky, G. Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3. Phys. Rev. B 60, 7309–7313 (1999). 13. Okamoto, S. & Millis, A. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004). 14. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002). 15. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004). 16. Thiel, S., Hammer, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006). 17. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008). 18. Bhattacharya, A. et al. Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. Lett. 100, 257203 (2008). 19. Caviglia, A. D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C. & Triscone, J. M. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010). 20. Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010). 21. Tebano, A. et al. Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008). 22. Yunoki, S., Moreo, A., Dagotto, E., Okamoto, S., Kancharla, S. S. & Fujimori, A. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76, 064532 (2007). 23. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phy. 2, 244–248 (2006). 24. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007). 25. Garcia-Barriocanal, J. et al. ‘Charge leakage’ at LaMnO3/SrTiO3 interfaces. Adv. Mat. 22, 627–632 (2010). 26. Abbate, J. et al. Soft-X-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys. Rev. B 44, 5419–5422 (1991). 27. Aruta, C. et al. Preparation and characterization of LaMnO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 100, 023910 (2006). 28. Maekawa, S. in Physics of transition metal oxides chap. 1. Ed Springer (2004). 29. Aruta, C. et al. Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices. Phys. Rev. B 80, 140405(R) (2009). 30. Okamoto, S. Magnetic interaction at an interface between manganite and other transition-metal oxides. Phys. Rev. B 82, 024427 (2010). 31. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular Dichroism Sum Rules for Iron and Cobalt. Phys. Rev. Lett. 75, 152 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublication02b59ca8-7ad4-435f-bfd1-a4ac8425afd8
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery02b59ca8-7ad4-435f-bfd1-a4ac8425afd8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC144 libre + CC.pdf
Size:
795.66 KB
Format:
Adobe Portable Document Format

Collections