Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Proximal calculus on Riemannian manifolds

dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorAzagra Rueda, Daniel
dc.date.accessioned2023-06-20T09:34:02Z
dc.date.available2023-06-20T09:34:02Z
dc.date.issued2005
dc.description.abstractWe introduce a proximal subdifferential and develop a calculus for nonsmooth functions defined on any Riemannian manifold M. We give some applications of this theory, concerning, for instance, a Borwein-Preiss type variational principle on a Riemannian manifold M, as well as differentiability and geometrical properties of the distance function to a closed subset C of M.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15202
dc.identifier.doi10.1007/s00009-005-0056-4
dc.identifier.issn1660-5446
dc.identifier.officialurlhttp://www.springerlink.com/content/p1q0626q11453542/fulltext.pdf?MUD=MP
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49922
dc.issue.number4
dc.journal.titleMediterranean journal of mathematics
dc.language.isoeng
dc.page.final450
dc.page.initial437
dc.publisherBIRKHAUSER VERLAG AG
dc.relation.projectIDBFM2003-06420
dc.relation.projectIDCT2003-500927
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordProximal subdifferential
dc.subject.keywordRiemannian manifold
dc.subject.keywordVariational principle
dc.subject.keywordMean value theorem
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleProximal calculus on Riemannian manifolds
dc.typejournal article
dc.volume.number2
dcterms.referencesH. Attouch and R.J-B. Wets, A convergence theory for saddle functions. Trans. Amer. Math. Soc. 280 (1983), 1-41. D. Azagra and M. Cepedello, Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds. Duke Math. J. 124 (2004), 47-66. D. Azagra and J. Ferrera, Applications of proximal calculus to fixed point theory on Riemannian manifolds. To appear on Nonlinear Anal. D. Azagra, J. Ferrera and F. L´opez-Mesas, Approximate Rolle’s theorems for the proximal subgradient and the generalized gradient. J. Math. Anal. Appl. 283 (2003), 180-191. D. Azagra, J. Ferrera and F. L´opez-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220 (2005), 304-361. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Grad. Texts in Math. 178, Springer, 1998. I.Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc. (New series) 1 (1979), 443-474. I.Ekeland, The Hopf-Rinow theorem in infinite dimension. J. Differential Geom. 13 (1978), 287-301. W. Klingenberg, Riemannian Geometry, de Gruyter Stud. Math., de Gruyter & Co., Berlin-New York, 1982. C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003), 1-25.
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
224.28 KB
Format:
Adobe Portable Document Format

Collections