Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the Eshelby-Kostrov property for the wave equation in the plane

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorOleaga Apadula, Gerardo Enrique
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T09:29:24Z
dc.date.available2023-06-20T09:29:24Z
dc.date.issued2006
dc.description.abstractThis work deals with the linear wave equation considered in the whole plane R2 except for a rectilinear moving slit, represented by a curve Γ (t) = {(x1, 0) : −∞ < x1 < λ(t)} with t ≥ 0. Along Γ (t) , either homogeneous Dirichlet or Neumann boundary conditions are imposed. We discuss existence and uniqueness for these problems, and derive explicit representation formulae for solutions. These last have a simple geometrical interpretation, and in particular allow to derive precise asymptotic expansions for solutions near the tip of the curve. In the Neumann case, we thus recover a classical result in fracture dynamics, namely the form of the stress intensity factor in crack propagation under antiplane shear conditions
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12899
dc.identifier.doi10.1090/S0002-9947-06-03995-X
dc.identifier.issn1088-6850
dc.identifier.officialurlhttp://dialnet.unirioja.es/servlet/revista?codigo=1445
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49705
dc.issue.number8
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final3695
dc.page.initial3673
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordStress Intensity Factors
dc.subject.keywordCrack Paths
dc.subject.keywordPropagation
dc.subject.keywordEvolution
dc.subject.keywordSituations
dc.subject.keywordExpansion
dc.subject.keywordForm
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn the Eshelby-Kostrov property for the wave equation in the plane
dc.typejournal article
dc.volume.number358
dspace.entity.typePublication
relation.isAuthorOfPublication8a7b6bff-4e63-42ed-bb95-31a089c7d57f
relation.isAuthorOfPublication.latestForDiscovery8a7b6bff-4e63-42ed-bb95-31a089c7d57f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2005ontheeshelby-17.pdf
Size:
245.74 KB
Format:
Adobe Portable Document Format

Collections