On the Eshelby-Kostrov property for the wave equation in the plane
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Oleaga Apadula, Gerardo Enrique | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T09:29:24Z | |
dc.date.available | 2023-06-20T09:29:24Z | |
dc.date.issued | 2006 | |
dc.description.abstract | This work deals with the linear wave equation considered in the whole plane R2 except for a rectilinear moving slit, represented by a curve Γ (t) = {(x1, 0) : −∞ < x1 < λ(t)} with t ≥ 0. Along Γ (t) , either homogeneous Dirichlet or Neumann boundary conditions are imposed. We discuss existence and uniqueness for these problems, and derive explicit representation formulae for solutions. These last have a simple geometrical interpretation, and in particular allow to derive precise asymptotic expansions for solutions near the tip of the curve. In the Neumann case, we thus recover a classical result in fracture dynamics, namely the form of the stress intensity factor in crack propagation under antiplane shear conditions | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12899 | |
dc.identifier.doi | 10.1090/S0002-9947-06-03995-X | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.officialurl | http://dialnet.unirioja.es/servlet/revista?codigo=1445 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49705 | |
dc.issue.number | 8 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 3695 | |
dc.page.initial | 3673 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Stress Intensity Factors | |
dc.subject.keyword | Crack Paths | |
dc.subject.keyword | Propagation | |
dc.subject.keyword | Evolution | |
dc.subject.keyword | Situations | |
dc.subject.keyword | Expansion | |
dc.subject.keyword | Form | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | On the Eshelby-Kostrov property for the wave equation in the plane | |
dc.type | journal article | |
dc.volume.number | 358 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f | |
relation.isAuthorOfPublication.latestForDiscovery | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f |
Download
Original bundle
1 - 1 of 1