Multiplexing bacteriocin synthesis to kill and prevent antimicrobial resistance

dc.contributor.authorQuintero Yanes, Alex
dc.contributor.authorPetit, Kenny
dc.contributor.authorRodriguez Villalobos, Hector
dc.contributor.authorVande Capelle, Hanne
dc.contributor.authorMasschelein, Joleen
dc.contributor.authorBorrero Del Pino, Juan
dc.contributor.authorGabant, Philippe
dc.date.accessioned2025-09-22T16:34:47Z
dc.date.available2025-09-22T16:34:47Z
dc.date.issued2024
dc.descriptionContributions A.Q.Y., P.G.; conception and design. A.Q.Y., O.D.V., H.R.V., H.V.C., H.G., J.B.; acquisition of data. K.P.; bioinformatic analysis. A.Q.Y., H.R.V., H.V.C., H.G., J.M., P.H.; analysis and interpretation of data. A.Q.Y., H.R.V., H.V.C., H.G., J.M., J.B., P.H., P.G.; draft or revising the manuscript. All authors read and approved the final manuscript
dc.description.abstractBacteriocins are underexplored yet promising candidates to combat antimicrobial resistance (AMR) and enable targeted therapy due to their natural origin, abundance and narrow spectrum of activity. In this study, we used a collection of engineered DNA devices and cell-free gene expression (CFE) to rapidly produce combinations (cocktails) of bacteriocins comprising both linear and circular proteins. Other cocktails were designed to target a specific bacterial species by leveraging insights into bacteriocin pathways for cell envelope penetration. These tailored combinations eradicated bacteria effectively while preventing resistance development. The synthesis of bacteriocins was optimized by using continuous exchange CFE, reengineering DNA parts, and adjusting conditions for disulfide bond formation. Also, we illustrate the efficacy of these bacteriocin mixtures against various multidrug-resistant human pathogens and highlight their potential through in vivo testing in the animal model Galleria mellonella. Our bacteriocin cocktail expression and test platform underscores the potential of bacteriocins for innovative treatments against multidrug-resistant infections
dc.description.departmentDepto. de Nutrición y Ciencia de los Alimentos
dc.description.facultyFac. de Veterinaria
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationQuintero-Yanes, A., Petit, K., Rodriguez-Villalobos, H., Vande Capelle, H., De Veirman, O., Gerstmans, H., Masschelein, J., Borrero, J., Hols, P., & Gabant, P. (2025). Multiplexed bacteriocin synthesis to combat and prevent antimicrobial resistance. Communications Biology, 8(1), 1246. https://doi.org/10.1038/s42003-025-08639-y
dc.identifier.doi10.1101/2024.09.06.611659
dc.identifier.essn2399-3642
dc.identifier.officialurlhttps://doi.org/10.1038/s42003-025-08639-y
dc.identifier.urihttps://hdl.handle.net/20.500.14352/124196
dc.issue.number1246
dc.journal.titleCommunications Biology
dc.language.isoeng
dc.page.final13
dc.page.initial1
dc.publisherNature Research
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu579.62
dc.subject.ucmMicrobiología (Veterinaria)
dc.subject.unesco3109.05 Microbiología
dc.titleMultiplexing bacteriocin synthesis to kill and prevent antimicrobial resistance
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number8(1)
dspace.entity.typePublication
relation.isAuthorOfPublicationadc58430-a38c-4344-992e-4672985881b7
relation.isAuthorOfPublication.latestForDiscoveryadc58430-a38c-4344-992e-4672985881b7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiplexed bacteriocin.pdf
Size:
6.08 MB
Format:
Adobe Portable Document Format

Collections