Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The t-invariant of analytic set germs of dimension 2

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.date.accessioned2023-06-20T16:50:42Z
dc.date.available2023-06-20T16:50:42Z
dc.date.issued2001
dc.description.abstractLet X-0 subset of R-n be an analytic set germ of dimension 2. We study the invariant t(X-0) defined as the least integer t such that any open semianalytic set germ of Xo can be written as a union of t basic open set germs. It is known that 2 less than or equal to t(X-0) less than or equal to 3. In this note we provide a geometric criterion to determine the exact value of t(X-0).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15052
dc.identifier.doi10.1016/S0022-4049(00)00089-X
dc.identifier.issn0022-4049
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S002240490000089X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57211
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final168
dc.page.initial157
dc.publisherElsevier Science B.V. (North-Holland)
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordReal analytic set
dc.subject.keywordSemianalytic set
dc.subject.keywordgerms
dc.subject.keywordT-invariant
dc.subject.keywordStability index
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe t-invariant of analytic set germs of dimension 2
dc.typejournal article
dc.volume.number160
dcterms.referencesC. Andradas, L. BrKocker, J. Ruiz, Constructible Sets in Real Geometry, Ergeb. der Math., Vol. 33, Berlin,Springer, 1996, p. 3 folge. C. Andradas, J. Ruiz, Algebraic and Analytic Geometry of Fans, Memoirs AMS 553 American Mathematical Society, Providence, RI, 1995. J. Bochnak, M. Coste, M.F. Roy, G)eom)etrie Alg)ebrique R)eelle, Springer, Berlin, 1987. A. Díaz-Cano, Ph.D. Thesis, U.C.M., Madrid, 1999. A. Díaz-Cano, C. Andradas, Stability index of closed semianalytic set germs, Math. Zeit. 229 (1998)743–751. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer, Berlin, 1966. J. Ruiz, A note on a separation problem, Arch. Math. 43 (1984) 422–426. [8] J. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics, Vieweg, Braunschweig,1993.
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12.pdf
Size:
171.12 KB
Format:
Adobe Portable Document Format

Collections