The t-invariant of analytic set germs of dimension 2
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.date.accessioned | 2023-06-20T16:50:42Z | |
dc.date.available | 2023-06-20T16:50:42Z | |
dc.date.issued | 2001 | |
dc.description.abstract | Let X-0 subset of R-n be an analytic set germ of dimension 2. We study the invariant t(X-0) defined as the least integer t such that any open semianalytic set germ of Xo can be written as a union of t basic open set germs. It is known that 2 less than or equal to t(X-0) less than or equal to 3. In this note we provide a geometric criterion to determine the exact value of t(X-0). | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15052 | |
dc.identifier.doi | 10.1016/S0022-4049(00)00089-X | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S002240490000089X | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57211 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 168 | |
dc.page.initial | 157 | |
dc.publisher | Elsevier Science B.V. (North-Holland) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Real analytic set | |
dc.subject.keyword | Semianalytic set | |
dc.subject.keyword | germs | |
dc.subject.keyword | T-invariant | |
dc.subject.keyword | Stability index | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | The t-invariant of analytic set germs of dimension 2 | |
dc.type | journal article | |
dc.volume.number | 160 | |
dcterms.references | C. Andradas, L. BrKocker, J. Ruiz, Constructible Sets in Real Geometry, Ergeb. der Math., Vol. 33, Berlin,Springer, 1996, p. 3 folge. C. Andradas, J. Ruiz, Algebraic and Analytic Geometry of Fans, Memoirs AMS 553 American Mathematical Society, Providence, RI, 1995. J. Bochnak, M. Coste, M.F. Roy, G)eom)etrie Alg)ebrique R)eelle, Springer, Berlin, 1987. A. Díaz-Cano, Ph.D. Thesis, U.C.M., Madrid, 1999. A. Díaz-Cano, C. Andradas, Stability index of closed semianalytic set germs, Math. Zeit. 229 (1998)743–751. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer, Berlin, 1966. J. Ruiz, A note on a separation problem, Arch. Math. 43 (1984) 422–426. [8] J. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics, Vieweg, Braunschweig,1993. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1